Highly ordered Tb_(x)Fe_(7)Co_(3)(x=0,0.6,0.8)nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morpho...Highly ordered Tb_(x)Fe_(7)Co_(3)(x=0,0.6,0.8)nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morphology,crystalline structure and magnetic properties were investigated.The asdeposited Tb_0 Fe_(7)Co_(3)nanowires comprise Fe_(7)Co_(3)phase.While after adding Tb,the diffraction peaks slightly shift left,indicating the infiltration of Tb atoms into Fe_(7)Co_(3)phase.After annealing,Tb_0 Fe_(7)Co_(3)nanowires still consist of Fe_(7)Co_(3)phase with a slight enhancement on coercivity.While the annealed nanowires with Tb doped present a complex phase composition containing Fe3 Tb,Fe_(2)Tb,Co_(3)Tb,Co_(17)Tb_(2),TbFeO_(3)and Fe_(2)O_(3)phases distribute in the central portion,and Co_(0.72)Fe_(0.28)at the nanowire outer walls.The annealed Tb_(x)Fe_(7)Co_(3)(x=0.6,0.8)nanowires show higher magnetic performance owing to the formation of hard magnetic phases,the interfacial elastic coupling between hard and soft phases and the coherent Fe3 Tb/Co_(3)Tb interface which restrain the domain wall motion.To be specific,the coercivity and remanence ratio of TbxFe_(7)Co_(3)(x=0.6,0.8)nanowires significantly enhance with increasing Tb content.展开更多
基金Project supported by National Natural Science Foundation of China(51271070,51871087)the Natural Science Foundation of Hebei Province(E2016202406)。
文摘Highly ordered Tb_(x)Fe_(7)Co_(3)(x=0,0.6,0.8)nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morphology,crystalline structure and magnetic properties were investigated.The asdeposited Tb_0 Fe_(7)Co_(3)nanowires comprise Fe_(7)Co_(3)phase.While after adding Tb,the diffraction peaks slightly shift left,indicating the infiltration of Tb atoms into Fe_(7)Co_(3)phase.After annealing,Tb_0 Fe_(7)Co_(3)nanowires still consist of Fe_(7)Co_(3)phase with a slight enhancement on coercivity.While the annealed nanowires with Tb doped present a complex phase composition containing Fe3 Tb,Fe_(2)Tb,Co_(3)Tb,Co_(17)Tb_(2),TbFeO_(3)and Fe_(2)O_(3)phases distribute in the central portion,and Co_(0.72)Fe_(0.28)at the nanowire outer walls.The annealed Tb_(x)Fe_(7)Co_(3)(x=0.6,0.8)nanowires show higher magnetic performance owing to the formation of hard magnetic phases,the interfacial elastic coupling between hard and soft phases and the coherent Fe3 Tb/Co_(3)Tb interface which restrain the domain wall motion.To be specific,the coercivity and remanence ratio of TbxFe_(7)Co_(3)(x=0.6,0.8)nanowires significantly enhance with increasing Tb content.