This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly con...This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.展开更多
Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a disto...Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.展开更多
Soil salinity is known to improve cadmium(Cd)mobility,especially in arid soils.However,the mechanisms involved in how salt stress-associated metabolic profiles participate in mediating Cd transport in the soil-plant s...Soil salinity is known to improve cadmium(Cd)mobility,especially in arid soils.However,the mechanisms involved in how salt stress-associated metabolic profiles participate in mediating Cd transport in the soil-plant system remain poorly understood.This study was designed to investigate the effects of salinity-induced changes in soil metabolites on Cd bioavailability.Sodium salts in different combinations according to molar ratio(NaCl:Na_(2)SO_(4)=1:1;NaCl:Na_(2)SO_(4):NaHCO_(3)=1:2:1;NaCl:Na_(2)SO_(4):NaHCO_(3):Na_(2)CO_(3)=1:9:9:1;NaCl:Na_(2)SO_(4):NaHCO_(3):Na_(2)CO_(3)=1:1:1:1)were applied to the Cd-contaminated soils,which increased soil Cd availability by 22.36%and the Cd content in wheat grains by 36.61%,compared to the control.Salt stress resulted in soil metabolic reprogramming,which might explain the decreased growth of wheat plants and increased Cd transport from the soil into wheat tissues.For example,down-regulation of starch and sucrose metabolism reduced the production of sugars,which adversely affected growth;up-regulation of fatty acid metabolism allowed wheat plants to maintain a normal intracellular environment under saline conditions;up-regulation of the tricarboxylic acid(TCA)cycle was triggered,causing an increase in organic acid synthesis and the accumulation of organic acids,which facilitated the migration of soil Cd into wheat tissues.In summary,salt stress can facilitate Cd transport into wheat tissues by the direct effect of salt-based ions and the combined effect of altered soil physicochemical properties and soil metabolic profiles in Cd-contaminated soils.展开更多
Background and Aims:Aminoacyl-tRNA synthetases(ARSs)participate in tumor initiation and progression but their involvement in hepatocellular carcinoma(HCC)is not clear.This study aimed to investigate the prognostic val...Background and Aims:Aminoacyl-tRNA synthetases(ARSs)participate in tumor initiation and progression but their involvement in hepatocellular carcinoma(HCC)is not clear.This study aimed to investigate the prognostic value and underlying mechanisms of ARS in HCC.Methods:Data were obtained from The Cancer Genome Atlas(TCGA),International Cancer Genome Consortium,Gene Expression Omnibus and Human Protein Atlas databases.The prognostic model was constructed with the use of Cox regression and least absolute shrinkage and selection operator regression.Kaplan-Meier survival analysis,enrichment analysis,single sample gene set enrichment analysis and tumor mutation burden calculation were performed with R to evaluate the model and explore the underlying mechanism.Wilcoxon tests were used for comparisons between groups.Results:Aspartyl-tRNA synthetase 2(DARS2),tyrosyl-tRNA synthetase 1(YARS1)and cysteinyl-tRNA synthetase 2(CARS2)were identified as prognostic biomarkers and enrolled in model construction.The area under receiver operating characteristic curve of the model was 0.775.The model was used to assign patients from TCGA into low-and high-risk groups.Those in the high-risk group had a worse prognosis(p<0.001).The clinical significance of the model was tested in different clinical subgroups.Genetic mutation analysis had a higher TP53 mutation frequency in high-risk group.Enrichment analysis and study of immune-related cells and molecules found that the high-risk group was characterized by immune-cell infiltration and immunosuppression states.Conclusions:A novel ARS family-based model of HCC prognosis was constructed.TP53 mutation frequency and immune-suppressive status accounted for a worse prognosis in patients included in the high-risk group.展开更多
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金supported in part by the National Natural Science Foundation of China(U1808205,62173079)the Natural Science Foundation of Hebei Province of China(F2000501005)。
文摘This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11562016 and 11672175)
文摘Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.
基金supported by the National Natural Science Foundation of China(Nos.42177010 and 41877387)Fundamental Research Funds for Central Non-profit Scientific Institution(No.1610132021008).
文摘Soil salinity is known to improve cadmium(Cd)mobility,especially in arid soils.However,the mechanisms involved in how salt stress-associated metabolic profiles participate in mediating Cd transport in the soil-plant system remain poorly understood.This study was designed to investigate the effects of salinity-induced changes in soil metabolites on Cd bioavailability.Sodium salts in different combinations according to molar ratio(NaCl:Na_(2)SO_(4)=1:1;NaCl:Na_(2)SO_(4):NaHCO_(3)=1:2:1;NaCl:Na_(2)SO_(4):NaHCO_(3):Na_(2)CO_(3)=1:9:9:1;NaCl:Na_(2)SO_(4):NaHCO_(3):Na_(2)CO_(3)=1:1:1:1)were applied to the Cd-contaminated soils,which increased soil Cd availability by 22.36%and the Cd content in wheat grains by 36.61%,compared to the control.Salt stress resulted in soil metabolic reprogramming,which might explain the decreased growth of wheat plants and increased Cd transport from the soil into wheat tissues.For example,down-regulation of starch and sucrose metabolism reduced the production of sugars,which adversely affected growth;up-regulation of fatty acid metabolism allowed wheat plants to maintain a normal intracellular environment under saline conditions;up-regulation of the tricarboxylic acid(TCA)cycle was triggered,causing an increase in organic acid synthesis and the accumulation of organic acids,which facilitated the migration of soil Cd into wheat tissues.In summary,salt stress can facilitate Cd transport into wheat tissues by the direct effect of salt-based ions and the combined effect of altered soil physicochemical properties and soil metabolic profiles in Cd-contaminated soils.
基金The National Natural Science Foundation of China(Grant Nos.81870385)supported this study。
文摘Background and Aims:Aminoacyl-tRNA synthetases(ARSs)participate in tumor initiation and progression but their involvement in hepatocellular carcinoma(HCC)is not clear.This study aimed to investigate the prognostic value and underlying mechanisms of ARS in HCC.Methods:Data were obtained from The Cancer Genome Atlas(TCGA),International Cancer Genome Consortium,Gene Expression Omnibus and Human Protein Atlas databases.The prognostic model was constructed with the use of Cox regression and least absolute shrinkage and selection operator regression.Kaplan-Meier survival analysis,enrichment analysis,single sample gene set enrichment analysis and tumor mutation burden calculation were performed with R to evaluate the model and explore the underlying mechanism.Wilcoxon tests were used for comparisons between groups.Results:Aspartyl-tRNA synthetase 2(DARS2),tyrosyl-tRNA synthetase 1(YARS1)and cysteinyl-tRNA synthetase 2(CARS2)were identified as prognostic biomarkers and enrolled in model construction.The area under receiver operating characteristic curve of the model was 0.775.The model was used to assign patients from TCGA into low-and high-risk groups.Those in the high-risk group had a worse prognosis(p<0.001).The clinical significance of the model was tested in different clinical subgroups.Genetic mutation analysis had a higher TP53 mutation frequency in high-risk group.Enrichment analysis and study of immune-related cells and molecules found that the high-risk group was characterized by immune-cell infiltration and immunosuppression states.Conclusions:A novel ARS family-based model of HCC prognosis was constructed.TP53 mutation frequency and immune-suppressive status accounted for a worse prognosis in patients included in the high-risk group.