To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 samplin...To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 sampling sites in the Xunyang Hg mining district were chosen in this study. Total gaseous mercury(TGM) in ambient air was measured using a Lumex-RA915 automatic Hg analyzer in2011. Rice samples and soil samples from rhizosphere were collected systematically and simultaneously. Total Hg(THg) and methylmercury(Me Hg) concentrations in rice grain and soil samples and Hg speciation with modified sequential selective extractions were measured. The local environment was seriously polluted with Hg. The TGM(302 ± 376 ng·m-3, ranging from 24 to 2220 ng·m^(-3)) in the local ambient air, THg(28 ± 30 mg·kg^(-1), ranging from 0.31 to 121 mg·kg^(-1)) and Me Hg(2.3 ± 1.9 lg·kg^(-1),ranging from 0.24 to 8.9 lg·kg^(-1)) in soil samples were at the sample level with Hg contaminated area. The THg concentration(26 ± 16 lg·kg^(-1)ranging from 4.5 to 71 lg·kg^(-1)) in most of the rice grain samples clearly exceeds the threshold level(20 lg·kg^(-1)) in the Chinese national guidelines for cereals(NY 861-2004). The inorganic mercury(IHg)(9.1 ± 5.6 lg·kg^(-1), ranging from 1.2 to 24 lg·kg^(-1)) and Me Hg(14 ± 9.8 lg·kg^(-1), ranging from 2.1 to 59 lg·kg^(-1))concentration in rice grain samples were at the same level with Hg contaminated area. The main species of Hg in paddy soils reveal strong complex Hg and residue Hg. According to the correlation analysis, a Hg pollution mode from local Hg mining and smelting was hypothesized, including Hg emission, transportation, methylation, and uptake process.展开更多
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of ...The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 μg m^-3 (mean -4- standard deviation) with a range of 17-128 μg m^-3 and a nighttime average of 55 ± 32 μg m^-3 with a range of 4-186 μg m^-3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 μg m^-3, with amean value of 53 ± 25 μg m^-3, which exceeded the 24-h PM2.5 standard of 35μg m^-3 set by USEPA, but was below the standard of 75 μg m^-3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) 〉 zinc (Zn) 〉 manganese (Mn) 〉 lead (Pb) 〉 arsenic (As)〉 chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 μg m^-3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.展开更多
The health hazard of mercury (Hg) compounds is internationally recognized, and the main pathways for methylmercury (MeHg) intake in humans are through consumption of food, especially fish. Given the large releases...The health hazard of mercury (Hg) compounds is internationally recognized, and the main pathways for methylmercury (MeHg) intake in humans are through consumption of food, especially fish. Given the large releases of Hg to the environment in China, combined with the fast development of hydropower, this issue deserves attention. Provided similar mobilization pathways of Hg in China as seen in reservoirs in North America and Europe one should expect increased Hg contamination in relation to future hydropower reservoir construction in this country. This study presents total Hg (THg) concentrations in wild fish from six Guizhou reservoirs, China. The THg concentrations in fish were generally low despite high background levels in the bedrock and depositions from local point sources. The over all mean ± SD concentration of THg was (0.066 ± 0.078) μg/g (n = 235). After adjusting for among-reservoir variation in THg, there were significant differences in THg among functional groups of the fish, assumed to re?ect trophic levels. Predicted THg- concentration ratios, retrieved from a mixed linear model, between the functional groups were 9:4:4:1 for carnivorous, omnivorous, planktivorous and herbivorous fish. This result indicated that MeHg accumulation may prevail even under circumstances with short food chains as in this Chinese water system. No fish exceeded recommended maximum THg limit for human consumption set by World Health Organization and the Standardization Administration of China (0.5 μg/g fish wet weight (ww)). Only six fish (2.5%) exceeded the maximum THg limit set by US Environmental Protection Agency (0.3 μg/g fish ww).展开更多
Effective biomarkers are necessary to better understand the human mercury(Hg) exposure levels. However, mismatched biomarker sampling method causes extra uncertainty in assessing the risk of Hg exposure. To compare th...Effective biomarkers are necessary to better understand the human mercury(Hg) exposure levels. However, mismatched biomarker sampling method causes extra uncertainty in assessing the risk of Hg exposure. To compare the differences between hair and fingernail, and further understand the excretion rates of methylmercury(MeHg) and inorganic mercury(IHg) via hair and fingernails, the total mercury(THg), Me Hg, and IHg concentrations in paired hair and fingernail samples were investigated through paired samples collected from two typical mining areas, Wanshan mercury mine area(WMMA) and Hezhang zinc smelting area(HZSA). The positive correlation in THg, MeHg, and IHg concentrations( p < 0.01) between hair and fingernail samples indicated that those two biomarkers can be corrected in application of assessing human Hg exposure. Compared to fingernails, the hair was suggested to be a more sensitive biomarker as the concentration of THg, MeHg and IHg were 2~4 times higher than those in fingernails. Furthermore, the amounts of THg, MeHg, and IHg excreted via hair were 70~226 times higher than that excreted via fingernails, and the hair plays a more important role than fingernails in the excretion of Hg from human bodies. Present study therefore provides some new insights to better understand the fate of human assimilated Hg.展开更多
基金financially supported by National Key Basic Research Program of China (973 Program,No.2013CB430004)the National Natural Science Foundation of China (No.41273152+1 种基金41473123)CAS Youth Innovation Promotion Association,Chinese Academy of Sciences (No.2011280)
文摘To date, the Xunyang mercury(Hg) mining district is the only ongoing large-scale Hg mining district in China. To understand the influence of Hg contamination mode from the Hg mining and smelting activities, 27 sampling sites in the Xunyang Hg mining district were chosen in this study. Total gaseous mercury(TGM) in ambient air was measured using a Lumex-RA915 automatic Hg analyzer in2011. Rice samples and soil samples from rhizosphere were collected systematically and simultaneously. Total Hg(THg) and methylmercury(Me Hg) concentrations in rice grain and soil samples and Hg speciation with modified sequential selective extractions were measured. The local environment was seriously polluted with Hg. The TGM(302 ± 376 ng·m-3, ranging from 24 to 2220 ng·m^(-3)) in the local ambient air, THg(28 ± 30 mg·kg^(-1), ranging from 0.31 to 121 mg·kg^(-1)) and Me Hg(2.3 ± 1.9 lg·kg^(-1),ranging from 0.24 to 8.9 lg·kg^(-1)) in soil samples were at the sample level with Hg contaminated area. The THg concentration(26 ± 16 lg·kg^(-1)ranging from 4.5 to 71 lg·kg^(-1)) in most of the rice grain samples clearly exceeds the threshold level(20 lg·kg^(-1)) in the Chinese national guidelines for cereals(NY 861-2004). The inorganic mercury(IHg)(9.1 ± 5.6 lg·kg^(-1), ranging from 1.2 to 24 lg·kg^(-1)) and Me Hg(14 ± 9.8 lg·kg^(-1), ranging from 2.1 to 59 lg·kg^(-1))concentration in rice grain samples were at the same level with Hg contaminated area. The main species of Hg in paddy soils reveal strong complex Hg and residue Hg. According to the correlation analysis, a Hg pollution mode from local Hg mining and smelting was hypothesized, including Hg emission, transportation, methylation, and uptake process.
基金The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development, partially funded and participated in the research described here through cooperative agreement CR-833232-01 through the U.S. National Science Foundation-National Research Council Research Associateship Awardfunded by the National Key Basic Research Program of China (2013CB430004)the National Natural Science Foundation of China (No. 40773067)
文摘The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 μg m^-3 (mean -4- standard deviation) with a range of 17-128 μg m^-3 and a nighttime average of 55 ± 32 μg m^-3 with a range of 4-186 μg m^-3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 μg m^-3, with amean value of 53 ± 25 μg m^-3, which exceeded the 24-h PM2.5 standard of 35μg m^-3 set by USEPA, but was below the standard of 75 μg m^-3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) 〉 zinc (Zn) 〉 manganese (Mn) 〉 lead (Pb) 〉 arsenic (As)〉 chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 μg m^-3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.
文摘The health hazard of mercury (Hg) compounds is internationally recognized, and the main pathways for methylmercury (MeHg) intake in humans are through consumption of food, especially fish. Given the large releases of Hg to the environment in China, combined with the fast development of hydropower, this issue deserves attention. Provided similar mobilization pathways of Hg in China as seen in reservoirs in North America and Europe one should expect increased Hg contamination in relation to future hydropower reservoir construction in this country. This study presents total Hg (THg) concentrations in wild fish from six Guizhou reservoirs, China. The THg concentrations in fish were generally low despite high background levels in the bedrock and depositions from local point sources. The over all mean ± SD concentration of THg was (0.066 ± 0.078) μg/g (n = 235). After adjusting for among-reservoir variation in THg, there were significant differences in THg among functional groups of the fish, assumed to re?ect trophic levels. Predicted THg- concentration ratios, retrieved from a mixed linear model, between the functional groups were 9:4:4:1 for carnivorous, omnivorous, planktivorous and herbivorous fish. This result indicated that MeHg accumulation may prevail even under circumstances with short food chains as in this Chinese water system. No fish exceeded recommended maximum THg limit for human consumption set by World Health Organization and the Standardization Administration of China (0.5 μg/g fish wet weight (ww)). Only six fish (2.5%) exceeded the maximum THg limit set by US Environmental Protection Agency (0.3 μg/g fish ww).
基金funded by t he Strategic Priority Research Programs of the Chinese Academy of Sciences (Pan-TPE, XDA20040502 )the National Natural Science Foundation of China (Nos. 41877405 , U1612442 , U1812403 )。
文摘Effective biomarkers are necessary to better understand the human mercury(Hg) exposure levels. However, mismatched biomarker sampling method causes extra uncertainty in assessing the risk of Hg exposure. To compare the differences between hair and fingernail, and further understand the excretion rates of methylmercury(MeHg) and inorganic mercury(IHg) via hair and fingernails, the total mercury(THg), Me Hg, and IHg concentrations in paired hair and fingernail samples were investigated through paired samples collected from two typical mining areas, Wanshan mercury mine area(WMMA) and Hezhang zinc smelting area(HZSA). The positive correlation in THg, MeHg, and IHg concentrations( p < 0.01) between hair and fingernail samples indicated that those two biomarkers can be corrected in application of assessing human Hg exposure. Compared to fingernails, the hair was suggested to be a more sensitive biomarker as the concentration of THg, MeHg and IHg were 2~4 times higher than those in fingernails. Furthermore, the amounts of THg, MeHg, and IHg excreted via hair were 70~226 times higher than that excreted via fingernails, and the hair plays a more important role than fingernails in the excretion of Hg from human bodies. Present study therefore provides some new insights to better understand the fate of human assimilated Hg.