Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are mo...Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay(ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells(HPDC).展开更多
Background: Spatial multi-omics are demonstrated to be a powerful method to assist researchers on genetic studies. In this review, bioimaging-based spatial multi-omics techniques such as seqFISH+, merFISH, integrated ...Background: Spatial multi-omics are demonstrated to be a powerful method to assist researchers on genetic studies. In this review, bioimaging-based spatial multi-omics techniques such as seqFISH+, merFISH, integrated DNA seqFISH+, DNA merFISH, and MINA are introduced along with each technique’s probe design, development, and imaging processes.Results: seqFISH employed 4–5 fluorophores to barcode and conducted multiple rounds of hybridization, in order that mRNA can be identified through color-coding. seqFISH+ added 60 pseudo-color and distributed them equally into three channels to enhance imaging power, in order that i.e., 24,000 genes can be imaged in total. merFISH utilized 4 out 16 Hamming distance to innovatively provide a robust error-detecting method. MINA, a methodology combining merFISH (multiplexed error-robust fluorescence in situ hybridization) and chromosomal tracing, enabled multiplexed genomic architecture imaged in mammalian single cells. Optical reconstruction of chromatin architecture (ORCA) a method that could conduct DNA path tracing in nanoscale manner with kilobase resolution, an FISH variation that improved genetic resolution, enable high-precision fiducial registration and sequential imaging, and utilized Oligopaint probe to hybridize the short genomic region ranging from 2 to 10 kilobase. ORCA then prescribes these short section primary probes with individual barcodes to attach fluorophore and to be imaged.Conclusion: This review concentrated on providing a comprehensive overview for these spatial-multi-omics techniques with the intention on helping researchers on selecting appropriate technique for their research.展开更多
基金the National Natural Sciences Foundation of China(81172376,31270209)the 100 talent-program of the Chinese Academy of Sciencesthe State Key Laboratory of Virology for financial support
文摘Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay(ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells(HPDC).
文摘Background: Spatial multi-omics are demonstrated to be a powerful method to assist researchers on genetic studies. In this review, bioimaging-based spatial multi-omics techniques such as seqFISH+, merFISH, integrated DNA seqFISH+, DNA merFISH, and MINA are introduced along with each technique’s probe design, development, and imaging processes.Results: seqFISH employed 4–5 fluorophores to barcode and conducted multiple rounds of hybridization, in order that mRNA can be identified through color-coding. seqFISH+ added 60 pseudo-color and distributed them equally into three channels to enhance imaging power, in order that i.e., 24,000 genes can be imaged in total. merFISH utilized 4 out 16 Hamming distance to innovatively provide a robust error-detecting method. MINA, a methodology combining merFISH (multiplexed error-robust fluorescence in situ hybridization) and chromosomal tracing, enabled multiplexed genomic architecture imaged in mammalian single cells. Optical reconstruction of chromatin architecture (ORCA) a method that could conduct DNA path tracing in nanoscale manner with kilobase resolution, an FISH variation that improved genetic resolution, enable high-precision fiducial registration and sequential imaging, and utilized Oligopaint probe to hybridize the short genomic region ranging from 2 to 10 kilobase. ORCA then prescribes these short section primary probes with individual barcodes to attach fluorophore and to be imaged.Conclusion: This review concentrated on providing a comprehensive overview for these spatial-multi-omics techniques with the intention on helping researchers on selecting appropriate technique for their research.