Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi...Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.展开更多
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi...Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.展开更多
To improve the precisions of pose error analysis for 6-dof parallel kinematic mechanism( PKM)during assembly quality control,a Sobol sequence based on Quasi Monte Carlo( QMC) method is introduced and implemented in po...To improve the precisions of pose error analysis for 6-dof parallel kinematic mechanism( PKM)during assembly quality control,a Sobol sequence based on Quasi Monte Carlo( QMC) method is introduced and implemented in pose accuracy analysis for the PKM in this paper. The Sobol sequence based on Quasi Monte Carlo with the regularity and uniformity of samples in high dimensions,can prevail traditional Monte Carlo method with up to 98. 59% and 98. 25% enhancement for computational precision of pose error statistics.Then a PKM tolerance design system integrating this method is developed and with it pose error distributions of the PKM within a prescribed workspace are finally obtained and analyzed.展开更多
Leaf-color mutations have been studied extensively in plants.However,to better understand the complex mechanisms underlying the formation of leaf color,it is essential to continue discover novel genes involved in the ...Leaf-color mutations have been studied extensively in plants.However,to better understand the complex mechanisms underlying the formation of leaf color,it is essential to continue discover novel genes involved in the process of leaf color development.In this study,we identified a variegated-leaf(vg)mutant in tomato that exhibited defective phenotypes in thylakoids and photosynthesis.To clone the vg locus,an F2population was constructed from the cross between the vg mutant(Solanum lycopersicum)and the wild tomato LA1589(S.pimpinellifolium).Using the map-based cloning approach,the vg locus was mapped on chromosome 7 and narrowed down to a 128 kb region that contained 21 open reading frames(ORFs).The expression levels of ORF9,ORF10,and ORF13 were significantly lower in vg than in the wild-type plants,while the ORF11 transcript level was elevated in vg.We then mutagenized ORF9,ORF10,and ORF13 by the CRISPR/Cas9 system in the wild-type tomato background and found that only the ORF10 mutation reproduced the phenotype of variegated leaves,indicating that ORF10 represents VG and its down-regulated expression was responsible for the variegated leaf phenotype.ORF10 encodes a thylakoid formation protein and its mutant lines showed reduced levels of chlorophyll synthesis and photosynthesis.Taken together,these results suggest that VG is necessary for chloroplast development,chlorophyll synthesis,and photosynthesis in tomato.展开更多
Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric rean...Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.展开更多
This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial an...This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.展开更多
基金supported by the Intergovernmental International Science and Technology Innovation Cooperation Key Project of the National Key Research and Development Program of China (No.2022YFE0135100)the National Natural Science Foundation of China (No.52072171)+1 种基金the Beijing Nova Program (No.20220484057)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.
基金financially supported by the Young Scientist Project of the National Key Research and Development Program of China (No.2021YFC2900600)the Beijing Nova Program (No.20220484057)financial support from China Scholarship Council under Grant CSC No.202110300001。
文摘Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.
基金Sponsored by the National Defense Basic Scientific Research Program(Grant No.A0320110019)the Shanghai Science and Technology Innovation Action Plan(Grant No.11DZ1120800)
文摘To improve the precisions of pose error analysis for 6-dof parallel kinematic mechanism( PKM)during assembly quality control,a Sobol sequence based on Quasi Monte Carlo( QMC) method is introduced and implemented in pose accuracy analysis for the PKM in this paper. The Sobol sequence based on Quasi Monte Carlo with the regularity and uniformity of samples in high dimensions,can prevail traditional Monte Carlo method with up to 98. 59% and 98. 25% enhancement for computational precision of pose error statistics.Then a PKM tolerance design system integrating this method is developed and with it pose error distributions of the PKM within a prescribed workspace are finally obtained and analyzed.
基金supported by the National Natural Science Foundation of China(Grant Nos.31672149,31772317,and 32072595)China Postdoctoral Science Foundation(Grant No.2021M691174)。
文摘Leaf-color mutations have been studied extensively in plants.However,to better understand the complex mechanisms underlying the formation of leaf color,it is essential to continue discover novel genes involved in the process of leaf color development.In this study,we identified a variegated-leaf(vg)mutant in tomato that exhibited defective phenotypes in thylakoids and photosynthesis.To clone the vg locus,an F2population was constructed from the cross between the vg mutant(Solanum lycopersicum)and the wild tomato LA1589(S.pimpinellifolium).Using the map-based cloning approach,the vg locus was mapped on chromosome 7 and narrowed down to a 128 kb region that contained 21 open reading frames(ORFs).The expression levels of ORF9,ORF10,and ORF13 were significantly lower in vg than in the wild-type plants,while the ORF11 transcript level was elevated in vg.We then mutagenized ORF9,ORF10,and ORF13 by the CRISPR/Cas9 system in the wild-type tomato background and found that only the ORF10 mutation reproduced the phenotype of variegated leaves,indicating that ORF10 represents VG and its down-regulated expression was responsible for the variegated leaf phenotype.ORF10 encodes a thylakoid formation protein and its mutant lines showed reduced levels of chlorophyll synthesis and photosynthesis.Taken together,these results suggest that VG is necessary for chloroplast development,chlorophyll synthesis,and photosynthesis in tomato.
基金funded by the National Natural Foundation of China (Grant No.4170402741864002)+2 种基金the Guangxi Natural Science Foundation of China (2020GXNSFBA297145)the “Ba Gui Scholars” program of the provincial government of Guangxithe Innovation Project of Guangxi Graduate Education (Grant No. YCSW20211209)
文摘Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.
基金Work at the Chinese University of Hong Kong(CUHK)was supported by the Open Research Fund of Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(CAS-RADI,No.2014LDE010)National Key Basic Research Program of China(2015CB954103)+2 种基金Work at the RADI-CAS was funded by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(No.XDA05040401)Work at University of Toronto is supported by the global scholarship program for research excellent from CUHK to Z.-C.ZengThe TCCON Network is supported by NASA’s Carbon Cycle Science Program through a grant to the California Institute of Technology.TCCON data were obtained from the TCCON Data Archive,operated by the California Institute of Technology from the website at http://tccon.ipac.caltech.edu/.Measurement programs at Darwin and Wollongong are supported by the Australian Research Council under grants DP140101552,DP110103118,DP0879468352,LP0562346.A part of work for Saga site at JAXA was supported by the Environment Research and Technology Development Fund(A-1102)of the Ministry of the Environment,Japan.Four Corners TCCON site was funded by LANL’s LDRD Project(20110081DR).
文摘This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.