This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome a...This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.展开更多
The physicochemical properties and composition of coix seed oil produced by Monascus purpureus fermentation and supercritical CO_(2)extraction were determined.Anti-lipid-oxidation and edible safety were evaluated usin...The physicochemical properties and composition of coix seed oil produced by Monascus purpureus fermentation and supercritical CO_(2)extraction were determined.Anti-lipid-oxidation and edible safety were evaluated using a cholesterol-fish oil model,acute oral toxicity assay,and genetic toxicity assay in vitro and in vivo,respectively.The results show that the extraction oil from fermented coix seed(FCS-O)had good physicochemical quality and abundant active components with physiological function.In particular,γ-tocotrienol,γ-oryzanol,coixenolide and oleic acid concentrations reached 72.83μg/g,745.96μg/g,9.65 mg/g and 316.58 mg/100 g DW,respectively.The FCS-O exhibited higher antioxidant capability in inhibiting lipid oxidation and peroxidation.Compared to the blank control,the concentrations of 7-ketocholestreol and peroxide only were 8.42μg/mL and 16.16 mmol/kg at 168 h of oxidation(P<0.01).In addition,the FCS-O has been confirmed to be a very safe edible oil,with no acute toxicity(LD50>10 g/kg bw,considered actually non-toxic)and no induced mutagenicity,cytotoxicity or genotoxicity.These results serve as a good safety reference for future application of the oil from fermented coix seed.The development and utilization of this kind of oil will be beneficial as a food,food ingredient,nutritional supplement,or natural food antioxidant to promote good health function.展开更多
Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the...Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.展开更多
Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxia...Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxianus L1-1)contained more fl avor compounds.Organic acids mainly included L-lactic acid and the main volatile fl avor component was ethyl acetate.Moreover,the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced.The combined analysis results of RNA sequencing(RNA-seq)technology and 4D label-free quantitative(4D LFQ)proteomics explained the fl avor formation pathways in rice-acid soup inoculated with L.paracasei H4-11 and K.marxianus L1-1.In L.paracasei H4-11,L-lactate dehydrogenase,phosphoglucomutase,acetate kinase,alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated.In K.marxianus L1-1,Acetyl-CoA,acetaldehyde dehydrogenase,acyl-coenzyme A,N-acetyltransferase,and L-lactate dehydrogenase were up-regulated and hexokinase,alcohol dehydrogenase,and alcohol O-acetyltransferase were down-regulated.The above up-regulation and down-regulation synergistically promoted the formation of characteristic fl avor compounds(mainly L-lactic acid and ethyl acetate).Enzyme-linked immunoassay(ELISA)and parallel reaction monitoring(PRM)quantitative analysis respectively verifi ed that 5 key metabolic enzymes and 27 proteins in L.paracasei H4-11 and K.marxianus L1-1 were associated with the characteristic fl avor of rice-acid soup,as confi rmed by the quantitative results of 4D LFQ.展开更多
Rice-acid,a Chinese traditional acidic rice soup(rice-acid),is widely accepted by consumers due to its unique flavor and anti-oxidation,anti-aging and immunity enhancement functions.This study confirmed that L-lactic ...Rice-acid,a Chinese traditional acidic rice soup(rice-acid),is widely accepted by consumers due to its unique flavor and anti-oxidation,anti-aging and immunity enhancement functions.This study confirmed that L-lactic acid and malic acid were the main organic acids in rice-acid.Low-temperature rice-acid samples produced by enterprises had the highest signal intensity of sour taste.The total content of free amino acids in different fermented rice-acid samples were in the range of 0.003-0.468 mg/g.42 key volatile flavor compounds were identified in rice-acid.8 volatile compounds with a higher contribution to the aroma of rice-acid were respectively acetic acid,1-octen-3-ol,2-heptanol,ethyl acetate,propyl propionate,hexanal,nonanal,and2,3-butanedione.The interaction between lactic acid bacteria(3.00×10^(3)-7.02×10^(6) CFU/mL)and yeasts(5.04×10^(4)-2.25×10^(8) CFU/mL)affected the formation of taste and aroma components in rice-acid.The physicochemical characteristics including titratable acidity,pH,reducing sugars,amino acid nitrogen,gammaaminobutyric acid showed significant differences between low-temperature fermentation samples and hightemperature fermentation samples.In addition,relationships linking all data through Pearson coefficient correlation were also reported.In summary,the study can be used to improve the quality of rice-acid products.展开更多
In order to study the changes and mechanism of phenolic compounds during Tartary buckwheat germination,the dynamic changes of phenolic compounds were analyzed,and the activities of enzymes that regulate phenolic compo...In order to study the changes and mechanism of phenolic compounds during Tartary buckwheat germination,the dynamic changes of phenolic compounds were analyzed,and the activities of enzymes that regulate phenolic compound biosynthesis and degradation were monitored.Total phenolics and total flavonoids presented an interesting dynamic trend with the extension of the germination time,and rutin,gallic acid,chlorogenic acid as well as 2,3,4-trihydroxybenzoic acid contents showed an increasing trend during germination period,the contents were up to(2663.4±61.1),(449.12±5.26),(99.953±7.800)and(50.442±1.477)mg/100 g DW,respectively.Phenylalanine ammonia lyase(PAL)and chalcone isomerase(CHI)are dominant enzymes in regulating phenolic compound biosynthesis,which showed an increasing trend.Rutin degrading enzyme(RDEs)is the key enzyme in regulating phenolic compound degradation,which showed a decreasing trend.These results suggested that germination processing increases the phenolic compound contents of Tartary buckwheat,which may be regulated by the activation of PAL,CHI and the inhibition of RDEs.展开更多
基金financially supported by National Natural Science Foundation of China (32060530)Guizhou University, Gui Da Te Gang He Zi (2022) 39, Technology platform and talent team plan of Guizhou. China ((2018)5251)+2 种基金Graduate Research Fund Project of Guizhou (YJSCXJH(2019]028)Industry-University-Research Cooperation Project of Guizhou (701/700465172217)China Scholarship Council (201906670006)
文摘This study aims to explore the formation mechanism of ethyl acetate and organic acids in acid rice soup(rice-acid soup)inoculated with Kluyveromyces marxianus L1-1 through the complementary analysis of transcriptome and proteome.The quantity of K.marxianus L1-1 varied significantly in the fermentation process of rice-acid soup and the first and third days were the two key turning points in the growth phase of K.marxianus L1-1.Importantly,the concentrations of ethyl acetate,ethanol,acetic acid,and L-lactic acid increased from day 1 to day 3.At least 4231 genes and 2937 proteins were identified and 610 differentially expressed proteins were annotated to 30 Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways based on the analysis results of transcriptome and proteome.The key genes and proteins including up-regulated alcohol dehydrogenase family,alcohol O-acetyltransferase,acetyl-CoA C-acetyltransferase,acyl-coenzyme A thioester hydrolase,and down-regulated aldehyde dehydrogenase family were involved in glycolysis/gluconeogenesis pathways,starch and sucrose metabolism pathways,amino sugar and nucleotide sugar metabolism pathways,tricarboxylic acid(TCA)cycle,and pyruvate metabolism pathways,thus promoting the formation of ethyl acetate,organic acids,alcohols,and other esters.Our results revealed the formation mechanisms of ethyl acetate and organic acids in rice-acid soup inoculated with K.marxianus L1-1.
基金supported by Natural Science Foundation of China(32260583)the Agriculture Committee of Guizhou Province[(2017)106&(2018)81]the Talent Introduction Program of Guizhou University[(2021)76].
文摘The physicochemical properties and composition of coix seed oil produced by Monascus purpureus fermentation and supercritical CO_(2)extraction were determined.Anti-lipid-oxidation and edible safety were evaluated using a cholesterol-fish oil model,acute oral toxicity assay,and genetic toxicity assay in vitro and in vivo,respectively.The results show that the extraction oil from fermented coix seed(FCS-O)had good physicochemical quality and abundant active components with physiological function.In particular,γ-tocotrienol,γ-oryzanol,coixenolide and oleic acid concentrations reached 72.83μg/g,745.96μg/g,9.65 mg/g and 316.58 mg/100 g DW,respectively.The FCS-O exhibited higher antioxidant capability in inhibiting lipid oxidation and peroxidation.Compared to the blank control,the concentrations of 7-ketocholestreol and peroxide only were 8.42μg/mL and 16.16 mmol/kg at 168 h of oxidation(P<0.01).In addition,the FCS-O has been confirmed to be a very safe edible oil,with no acute toxicity(LD50>10 g/kg bw,considered actually non-toxic)and no induced mutagenicity,cytotoxicity or genotoxicity.These results serve as a good safety reference for future application of the oil from fermented coix seed.The development and utilization of this kind of oil will be beneficial as a food,food ingredient,nutritional supplement,or natural food antioxidant to promote good health function.
基金supported by the National Natural Science Foundation of China(52272296,51502092)the Fundamental Research Funds for the Central Universities(JKD01211601,1222201718002)+1 种基金the National Overseas High-Level Talent Youth Program in Chinathe Eastern Scholar Project of Shanghai。
文摘Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.
基金funded by National Natural Science Foundation of China(32060530)Guizhou University,Gui Da Te Gang He Zi(2022)39,Science and Technology Project of Guizhou Province,Qian Ke He Zhicheng[2022]Zhongdian 001-2,Qian Ke He Zhicheng[2022]Zhongdian 003-3+1 种基金Industry-University-Research Cooperation Project of Guizhou University(701/700465172217)China Scholarship Council(201906670006).
文摘Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxianus L1-1)contained more fl avor compounds.Organic acids mainly included L-lactic acid and the main volatile fl avor component was ethyl acetate.Moreover,the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced.The combined analysis results of RNA sequencing(RNA-seq)technology and 4D label-free quantitative(4D LFQ)proteomics explained the fl avor formation pathways in rice-acid soup inoculated with L.paracasei H4-11 and K.marxianus L1-1.In L.paracasei H4-11,L-lactate dehydrogenase,phosphoglucomutase,acetate kinase,alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated.In K.marxianus L1-1,Acetyl-CoA,acetaldehyde dehydrogenase,acyl-coenzyme A,N-acetyltransferase,and L-lactate dehydrogenase were up-regulated and hexokinase,alcohol dehydrogenase,and alcohol O-acetyltransferase were down-regulated.The above up-regulation and down-regulation synergistically promoted the formation of characteristic fl avor compounds(mainly L-lactic acid and ethyl acetate).Enzyme-linked immunoassay(ELISA)and parallel reaction monitoring(PRM)quantitative analysis respectively verifi ed that 5 key metabolic enzymes and 27 proteins in L.paracasei H4-11 and K.marxianus L1-1 were associated with the characteristic fl avor of rice-acid soup,as confi rmed by the quantitative results of 4D LFQ.
基金financially supported by National Natural Science Foundation of China(32060530)Technology platform and talent team plan of Guizhou.China([2018]5251)+2 种基金Graduate Research Fund Project of Guizhou(YJSCXJH[2019]028)Industry-UniversityResearch Cooperation Project of Guizhou(701/700465172217)China Scholarship Council(201906670006)。
文摘Rice-acid,a Chinese traditional acidic rice soup(rice-acid),is widely accepted by consumers due to its unique flavor and anti-oxidation,anti-aging and immunity enhancement functions.This study confirmed that L-lactic acid and malic acid were the main organic acids in rice-acid.Low-temperature rice-acid samples produced by enterprises had the highest signal intensity of sour taste.The total content of free amino acids in different fermented rice-acid samples were in the range of 0.003-0.468 mg/g.42 key volatile flavor compounds were identified in rice-acid.8 volatile compounds with a higher contribution to the aroma of rice-acid were respectively acetic acid,1-octen-3-ol,2-heptanol,ethyl acetate,propyl propionate,hexanal,nonanal,and2,3-butanedione.The interaction between lactic acid bacteria(3.00×10^(3)-7.02×10^(6) CFU/mL)and yeasts(5.04×10^(4)-2.25×10^(8) CFU/mL)affected the formation of taste and aroma components in rice-acid.The physicochemical characteristics including titratable acidity,pH,reducing sugars,amino acid nitrogen,gammaaminobutyric acid showed significant differences between low-temperature fermentation samples and hightemperature fermentation samples.In addition,relationships linking all data through Pearson coefficient correlation were also reported.In summary,the study can be used to improve the quality of rice-acid products.
基金This research was funded by Guizhou Science and Technology Program(Qian Ke He Jichu[2019]1071,Qian Ke He Zhicheng[2020]1Y171Qian Ke He Zhicheng[2022]zhongdian007)+3 种基金Introducing Talents Program in Guizhou University(Gui Da Ren Ji He Zi(2017)46)Establishment of Guizhou Modern Agriculture Industry Technical System(Characteristic Coarse Cereals)(Qian Cai Nong[2018]81)Guizhou Key Agricultural Techniques Promotion Program(Qian Cai Nong[2017]106)The authors thanks Chun Mao,for providing the Tartary buckwheat materials.
文摘In order to study the changes and mechanism of phenolic compounds during Tartary buckwheat germination,the dynamic changes of phenolic compounds were analyzed,and the activities of enzymes that regulate phenolic compound biosynthesis and degradation were monitored.Total phenolics and total flavonoids presented an interesting dynamic trend with the extension of the germination time,and rutin,gallic acid,chlorogenic acid as well as 2,3,4-trihydroxybenzoic acid contents showed an increasing trend during germination period,the contents were up to(2663.4±61.1),(449.12±5.26),(99.953±7.800)and(50.442±1.477)mg/100 g DW,respectively.Phenylalanine ammonia lyase(PAL)and chalcone isomerase(CHI)are dominant enzymes in regulating phenolic compound biosynthesis,which showed an increasing trend.Rutin degrading enzyme(RDEs)is the key enzyme in regulating phenolic compound degradation,which showed a decreasing trend.These results suggested that germination processing increases the phenolic compound contents of Tartary buckwheat,which may be regulated by the activation of PAL,CHI and the inhibition of RDEs.