To study the configuration and conductivity effects on micro-scale methane-air flames by electric field and iron wind,different electric field forces and iron winds are generated by needle,circle and plate electrodes ...To study the configuration and conductivity effects on micro-scale methane-air flames by electric field and iron wind,different electric field forces and iron winds are generated by needle,circle and plate electrodes respectively in different electrodes heights under both AC and DC fields though experiments. Experimental results showed that the flame characteristics are affected by needle electrodes mainly through the action of ion wind,by plate type electrodes mainly through the action of electric field force and by annular electrodes through both the electric field force and ion wind at the same time. Under DC field 's effects of all electrodes types,the flame will consequently go down while the voltage reached to a limit value,and it will breakdown under the strong effect of the ion wind by needle electrodes. The results also showed the influence by different electrodes types to the current characteristics,resistance properties and configuration of themicro-scale flames.展开更多
In order to solve the problem of residual film pollution caused by large area of cotton mulched planting in Xinjiang,a strip type residual film recycling and baling machine was designed,which can complete mulching fil...In order to solve the problem of residual film pollution caused by large area of cotton mulched planting in Xinjiang,a strip type residual film recycling and baling machine was designed,which can complete mulching film picking up,impurities separation,baling and other operations.The picking up device,as the key part of residual film recycling machine,was designed and analyzed.The kinematics of the pick-up nail tooth was analyzed,and its motion equation,motion trajectory and the conditions for completing the film pick-up were determined.And the key parameters were determined by analyzing the conditions of no missing picking and the stress of the residual film.According to the Box-Benhnken test design principle,field experiments were carried out with the forward speed of machine,the pickup speed ratio and the number of auxiliary film removing mechanisms as the key experimental factors,and the residual film pickup rate,the cotton stalk content and the residual film winding rate as the operation performance indexes of the picking up device.The mathematical models between the experimental factors and indexes were established,and the effect of each factor was analyzed.Through multi-objective parameter optimization and field experiment,the optimal combination of operation parameters was obtained as follows:the forward speed of machine of 1.67 m/s,the pickup speed ratio of 1.13,and the number of auxiliary film removing mechanisms of 6.Under this parameter combination,the pickup rate of residual film was 88.9%,the cotton stalk content in recycled residual film of 3.9%,and the residual film winding rate of 1.5%.The absolute error with the theoretical value was less than 0.6%.The research results show that the picking up device has stable operation performance and good residual film recycling effect,which meets the design and practical operation requirements.展开更多
Arabidopsis BOTRYTIS-INDUCED KINASE1(BIK1)is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity.It is known to form a signaling complex with a...Arabidopsis BOTRYTIS-INDUCED KINASE1(BIK1)is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity.It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-asso-ciated molecular patterns(PAMPs).Although site-specifi c phosphorylation is speculated to mediate the activation and function of BIK1,few studies have been devoted to complete profiling of BIK1 phosphorylation residues.Here,we identified nineteen in vitro autophosphoryla-tion sites of BIK1 including three phosphotyrosine sites,thereby proving BIK1 is a dual-specifi city kinase for the fi rst time.The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spec-trometry(MS).Thr-237,Thr-242 and Tyr-250 were found to most signifi cantly affect BIK1 activity in autophosphoryla-tion and phosphorylation of BAK1 in vitro.A structural model of BIK1 was built to further illustrate the molecular functions of specifi c phosphorylation residues.We also mapped new sites of FLS2 phosphorylation by BIK1,which are different from those by BAK1.These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and medi-ates downstream signaling specifi city.展开更多
基金Sponsored by National Natural Science Foundation of China(Grant No.51376021)
文摘To study the configuration and conductivity effects on micro-scale methane-air flames by electric field and iron wind,different electric field forces and iron winds are generated by needle,circle and plate electrodes respectively in different electrodes heights under both AC and DC fields though experiments. Experimental results showed that the flame characteristics are affected by needle electrodes mainly through the action of ion wind,by plate type electrodes mainly through the action of electric field force and by annular electrodes through both the electric field force and ion wind at the same time. Under DC field 's effects of all electrodes types,the flame will consequently go down while the voltage reached to a limit value,and it will breakdown under the strong effect of the ion wind by needle electrodes. The results also showed the influence by different electrodes types to the current characteristics,resistance properties and configuration of themicro-scale flames.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFD1001004)China Agriculture Research System-Cotton (CARS-15-23).
文摘In order to solve the problem of residual film pollution caused by large area of cotton mulched planting in Xinjiang,a strip type residual film recycling and baling machine was designed,which can complete mulching film picking up,impurities separation,baling and other operations.The picking up device,as the key part of residual film recycling machine,was designed and analyzed.The kinematics of the pick-up nail tooth was analyzed,and its motion equation,motion trajectory and the conditions for completing the film pick-up were determined.And the key parameters were determined by analyzing the conditions of no missing picking and the stress of the residual film.According to the Box-Benhnken test design principle,field experiments were carried out with the forward speed of machine,the pickup speed ratio and the number of auxiliary film removing mechanisms as the key experimental factors,and the residual film pickup rate,the cotton stalk content and the residual film winding rate as the operation performance indexes of the picking up device.The mathematical models between the experimental factors and indexes were established,and the effect of each factor was analyzed.Through multi-objective parameter optimization and field experiment,the optimal combination of operation parameters was obtained as follows:the forward speed of machine of 1.67 m/s,the pickup speed ratio of 1.13,and the number of auxiliary film removing mechanisms of 6.Under this parameter combination,the pickup rate of residual film was 88.9%,the cotton stalk content in recycled residual film of 3.9%,and the residual film winding rate of 1.5%.The absolute error with the theoretical value was less than 0.6%.The research results show that the picking up device has stable operation performance and good residual film recycling effect,which meets the design and practical operation requirements.
基金the National Natural Science Foundation of China(Grant Nos.31170782 and 31100208)Tianjin Natural Science Foundation(Grant No.11JCYBJC25500)Spe-cialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110031120019).
文摘Arabidopsis BOTRYTIS-INDUCED KINASE1(BIK1)is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity.It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-asso-ciated molecular patterns(PAMPs).Although site-specifi c phosphorylation is speculated to mediate the activation and function of BIK1,few studies have been devoted to complete profiling of BIK1 phosphorylation residues.Here,we identified nineteen in vitro autophosphoryla-tion sites of BIK1 including three phosphotyrosine sites,thereby proving BIK1 is a dual-specifi city kinase for the fi rst time.The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spec-trometry(MS).Thr-237,Thr-242 and Tyr-250 were found to most signifi cantly affect BIK1 activity in autophosphoryla-tion and phosphorylation of BAK1 in vitro.A structural model of BIK1 was built to further illustrate the molecular functions of specifi c phosphorylation residues.We also mapped new sites of FLS2 phosphorylation by BIK1,which are different from those by BAK1.These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and medi-ates downstream signaling specifi city.