BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons comb...BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs.展开更多
Extracellular vesicles(EVs)such as microvesicles(MIVs)play an important role in intercellular communications.MIVs are small membrane vesicles sized 100e1000 nm in diameter that are released by many types of cells,such...Extracellular vesicles(EVs)such as microvesicles(MIVs)play an important role in intercellular communications.MIVs are small membrane vesicles sized 100e1000 nm in diameter that are released by many types of cells,such as mesenchymal stem cells(MSCs),tumor cells and adipose-derived stem cells(ADSC).As EVs can carry out autocrine and paracrine functions by controlling multiple cell processes,it is conceivable that EVs can be used as delivery vehicles for treating several clinical conditions,such as to improve cardiac angiogenesis after myocardial infarction(MI).Here,we seek to investigate whether ADSC-derived MIVs contain microRNAs that regulate angiogenesis and affect cell migration of endothelial cells.We first characterized the ADSC-derived MIVs and found that the MIVs had a size range of 100 e300 nm,and expressed the MIV marker protein Alix.We then analyzed the microRNAs in ADSCs and ADSC-derived MIVs and demonstrated that ADSC-derived MIVs selectively released a panel of microRNAs,several of which were related to angiogenesis,including two members of the let-7 family.Furthermore,we demonstrated that ADSC-derived MIVs promoted the cell migration and invasion of the HUVEC endothelial cells.The PKH26-labeled ADSC-derived MIVs were effectively uptaken into the cytoplasm of HUVEC cells.Collectively,our results demonstrate that the ADSC-derived MIVs can promote migration and invasion abilities of endothelial cells,suggesting pro-angiogenetic potential.Future studies should focus on investigating the roles and mechanisms through which ADSC-derived MIVs regulate angiogenesis.展开更多
基金Supported by Hangzhou Medical and Health Technology Project,No.OO20191141。
文摘BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs.
基金The reported work was supported in part by research grants from the Natural Science Foundation of Jiangxi Province China(#20151BAB215005)the Natural Science Foundation of China(#81660029,81360083)+2 种基金TCH was also supported by the Mabel Green Myers Research Endowment Fund,USA and The University of Chicago Orthopaedics Alumni Fund,USA.Funding sources were not involved in the study designin the collection,analysis and interpretation of data,in the writing of the reportand in the decision to submit the paper for publication.
文摘Extracellular vesicles(EVs)such as microvesicles(MIVs)play an important role in intercellular communications.MIVs are small membrane vesicles sized 100e1000 nm in diameter that are released by many types of cells,such as mesenchymal stem cells(MSCs),tumor cells and adipose-derived stem cells(ADSC).As EVs can carry out autocrine and paracrine functions by controlling multiple cell processes,it is conceivable that EVs can be used as delivery vehicles for treating several clinical conditions,such as to improve cardiac angiogenesis after myocardial infarction(MI).Here,we seek to investigate whether ADSC-derived MIVs contain microRNAs that regulate angiogenesis and affect cell migration of endothelial cells.We first characterized the ADSC-derived MIVs and found that the MIVs had a size range of 100 e300 nm,and expressed the MIV marker protein Alix.We then analyzed the microRNAs in ADSCs and ADSC-derived MIVs and demonstrated that ADSC-derived MIVs selectively released a panel of microRNAs,several of which were related to angiogenesis,including two members of the let-7 family.Furthermore,we demonstrated that ADSC-derived MIVs promoted the cell migration and invasion of the HUVEC endothelial cells.The PKH26-labeled ADSC-derived MIVs were effectively uptaken into the cytoplasm of HUVEC cells.Collectively,our results demonstrate that the ADSC-derived MIVs can promote migration and invasion abilities of endothelial cells,suggesting pro-angiogenetic potential.Future studies should focus on investigating the roles and mechanisms through which ADSC-derived MIVs regulate angiogenesis.