期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Anchoring mechanical characteristics of Ductile-Expansion bolt
1
作者 Yu Chen Wang Liu +4 位作者 linchong huang Hang Lin Yixian Wang Yanlin Zhao Cungang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1115-1134,共20页
The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the... The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance. 展开更多
关键词 Ductile-Expansion bolt Pull-out test Peak load Anchoring mechanical characteristics
下载PDF
Stability analysis on tunnels with karst caves using the distinct lattice spring model 被引量:2
2
作者 Jianjun Ma Junwei Guan +2 位作者 Junfeng Duan linchong huang Yu Liang 《Underground Space》 SCIE EI 2021年第4期469-481,共13页
The effects of karst caves on tunnel stability were numerically investigated using the distinct lattice spring model(DLSM).The DLSM was validated by investigating the mechanical behavior of Brazilian discs with variou... The effects of karst caves on tunnel stability were numerically investigated using the distinct lattice spring model(DLSM).The DLSM was validated by investigating the mechanical behavior of Brazilian discs with various sizes of central circular holes.Then,the effects of karst cave on U-shaped tunnel were investigated under various karst caves positions(top,bottom,and right side of the tunnel),tunnelcave distances(0.5-4 times the radius of the tunnel arc),and cave shapes(circular,rectangular flat,and rectangular vertical caves).The failure processes of the tunnel under those various conditions were analyzed and both the failure process and the final failure patterns of the tunnel were discussed.Numerical simulation demonstrated that karst caves around the tunnel could weaken the stability of the tunnel,indicating tunnel-cave distance effects.The closer the cave to the tunnel,the weaker the tunnel under loading.This effect was not significant when the tunnel-cave distance(d)was larger than three times the tunnel arc radius(R).In addition,the final failure pattern of the tunnel and its surrounding rock mass were dependent on both the position and the size of the cave.The larger the cave,the weaker the tunnel and its surrounding rock mass.Furthermore,compared with those cases with top and bottom caves,the tunnel with a right side cave had more impacts on tunnel stability.The main research finding could help engineers carry out stability analysis on tunnels in karst areas and take effective measures to enhance tunnel stability. 展开更多
关键词 Stability analysis TUNNEL Karst cave Distinct lattice spring model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部