Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a m...Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen Ⅲ oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype. Histochemical analysis demonstrated that lesion formation in rlin1 was light-dependent accompanied by reactive oxygen species accumulated. These results suggest that tetrapyrrole participates in lesion formation in rice.展开更多
Grain size is an important agronomic trait affecting grain yield,but the underlying molecular mechanisms remain to be elucidated.Here,we isolated a dominant mutant,big grainy(bg3-D),which exhibits a remarkable increas...Grain size is an important agronomic trait affecting grain yield,but the underlying molecular mechanisms remain to be elucidated.Here,we isolated a dominant mutant,big grainy(bg3-D),which exhibits a remarkable increase of grain size caused by activation of the PURINE PERMEASE gene,OsPUP4.BC3/OSPUP4 is predominantly expressed in vascular tissues and is specifically suppressed by exogenous cytokinin application.Hormone profiling revealed that the distribution of different cytokinin forms,in roots and shoots of the bg3-D mutant,is altered.Quantitative reverse transcription-PCR(qRT-PCR)analysis indicated that expression of rice cytokinin type-A RESPONSE REGULATOR(OsRR)genes is enhanced in the roots of the bgj-D mutant.These results suggest that OSPUP4 might contribute to the long-distance transport of cytokinin,by reinforcing cytokinin loading into vascular bundle cells.Furthermore,plants overexpressing OsPUP7,the closest homolog of OsPUP4,also exhibited a similar phenotype to the bg3-D mutant.Interestingly,subcellular localization demonstrated that OSPUP4 was localized on the plasma membrane,whereas OSPUP7 was localized to the endoplasmic reticulum.Based on these findings,we propose that OSPUP4 and OSPUP7 function in a linear pathway to direct cytokinin cell-to-cell transport,affecting both its long-distance movement and local allocation.展开更多
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金This work was supported by grants from the Ministry of Science and Technology of China(No.2009CB118506)the National Natural Science Foundation of China(Nos. 30825029 and 30621001)
文摘Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen Ⅲ oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype. Histochemical analysis demonstrated that lesion formation in rlin1 was light-dependent accompanied by reactive oxygen species accumulated. These results suggest that tetrapyrrole participates in lesion formation in rice.
基金supported by National Natural Science Foundation of China (Nos. 91735302, 31722037, 91435106, 91335203)
文摘Grain size is an important agronomic trait affecting grain yield,but the underlying molecular mechanisms remain to be elucidated.Here,we isolated a dominant mutant,big grainy(bg3-D),which exhibits a remarkable increase of grain size caused by activation of the PURINE PERMEASE gene,OsPUP4.BC3/OSPUP4 is predominantly expressed in vascular tissues and is specifically suppressed by exogenous cytokinin application.Hormone profiling revealed that the distribution of different cytokinin forms,in roots and shoots of the bg3-D mutant,is altered.Quantitative reverse transcription-PCR(qRT-PCR)analysis indicated that expression of rice cytokinin type-A RESPONSE REGULATOR(OsRR)genes is enhanced in the roots of the bgj-D mutant.These results suggest that OSPUP4 might contribute to the long-distance transport of cytokinin,by reinforcing cytokinin loading into vascular bundle cells.Furthermore,plants overexpressing OsPUP7,the closest homolog of OsPUP4,also exhibited a similar phenotype to the bg3-D mutant.Interestingly,subcellular localization demonstrated that OSPUP4 was localized on the plasma membrane,whereas OSPUP7 was localized to the endoplasmic reticulum.Based on these findings,we propose that OSPUP4 and OSPUP7 function in a linear pathway to direct cytokinin cell-to-cell transport,affecting both its long-distance movement and local allocation.