Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This...Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This review presents a brief background of the development of novel concepts and their clinical potentials.The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca^(2+)influx is critical for neuronal function.An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca^(2+)mainly via N-methyl-D-aspartate receptors,particularly of those at the extrasynaptic site.This Ca^(2+)-evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity.Furthermore,mild but sustained Ca^(2+)increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic,but gradually set off deteriorating Ca^(2+)-dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways.Based on the Ca^(2+)hypothesis of Alzheimer's disease and recent advances,this Ca^(2+)-activated“silent”degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis.The N-methyl-D-aspartate receptor subunit GluN3A,primarily at the extrasynaptic site,serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity.Ischemic stroke and Alzheimer's disease,therefore,share an N-methyl-D-aspartate receptor-and Ca^(2+)-mediated mechanism,although with much different time courses.It is thus proposed that early interventions to control Ca^(2+)homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia.This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.展开更多
Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rap...Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements,which is supported by the upregulation of glutamine transporters.Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors.Among all cancers,digestive system malignant tumors(DSMTs)have the highest incidence and mortality rates,and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy.Due to the relatively low survival rate and severe side effects associated with DSMTs treatment,new treatment strategies are urgently required.This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs.Additionally,glutamine transportertarget drugs are discussed,providing theoretical guidance for the further development of drugs DSMTs treatment.展开更多
Background Previous studies havedemonstrated that excitatory repetitive transcranial magnetic stimulation(rTMS)can improve the cognitive function of patients with Alzheimer's disease(AD).Intermittent theta burst s...Background Previous studies havedemonstrated that excitatory repetitive transcranial magnetic stimulation(rTMS)can improve the cognitive function of patients with Alzheimer's disease(AD).Intermittent theta burst stimulation(iTBS)is a novel excitatory rTMS protocol for brain activity stimulation with the ability to induce long-term potentiation-like plasticity and represents a promising treatment for AD.However,the long-term effects of iTBS on cognitive decline and brain structure in patients with AD areunknown.Aims We aimed to explore whether repeating accelerated iTBS every three months could slow down the cognitive decline in patients with AD.Methods In this randomised,assessor-blinded,controlled trial,iTBS was administered to the left dorsolateral prefrontal cortex(DLPFC)of 42 patients with AD for 14days every 13weeks.Measurements included the Montreal Cognitive Assessment(MoCA),a comprehensive neuropsychological battery,and the grey matter volume(GMV)of the hippocampus.Patients were evaluated at baseline and after follow-up.The longitudinal pipeline of the Computational Anatomy Toolbox for SPM was used to detect significant treatment-related changes over time.Results The iTBS group maintained MoCA scores relative to the control group(t=3.26,p=0.013)and reduced hippocampal atrophy,which was significantly correlated with global degeneration scale changes.The baseline Mini-Mental State Examination(MMSE)score,apolipoprotein E genotype and Clinical Dementia Rating were indicative of MoCA scores at follow-up.Moreover,the GMV of the left(t=0.08,p=0.996)and right(t=0.19,p=0.977)hippocampus were maintained in the active group but significantly declined in the control group(left:t=4.13,p<0.001;right:t=5.31,p<0.001).GMV change in the left(r=0.35,p=0.023)and right(r=0.36,p=0.021)hippocampus across the intervention positively correlated with MoCA changes;left hippocampal GMV change was negatively correlated with global degeneration scale(r=-0.32,p=0.041)changes.Conclusions DLPFC-iTBS maybe a feasible and easy-to-implement non-pharmacological intervention to slow down the progressive decline of overall cognition and quality of life in patients with AD,providing a new AD treatment option.Trial registration number NCT04754152.展开更多
海洋垃圾已引起国际社会的广泛关注,是当前环境领域热点问题之一.为揭示我国渤海近岸海域海洋垃圾的赋存特征及其分布规律,于2018年丰水期(8月)在辽东湾河口区海域布设6个长度为5~10 km的调查断面,利用拖网同时采集海面漂浮垃圾与海底垃...海洋垃圾已引起国际社会的广泛关注,是当前环境领域热点问题之一.为揭示我国渤海近岸海域海洋垃圾的赋存特征及其分布规律,于2018年丰水期(8月)在辽东湾河口区海域布设6个长度为5~10 km的调查断面,利用拖网同时采集海面漂浮垃圾与海底垃圾,初步调查辽东湾近岸海域海洋垃圾分布和组成特征,并对海洋垃圾来源进行了分析.结果表明:①辽东湾海面漂浮垃圾数量密度为67个km^2,质量密度为741 g km^2;海底垃圾数量密度为19个km^2,质量密度为2544 g km^2.②在所收集的各类海洋垃圾中,塑料类垃圾数量占比约为50.9%,其中海底塑料类垃圾数量占比(62.1%)明显高于海面漂浮塑料垃圾数量占比(37.5%).③由塑料垃圾形态特征和表面带有的标识判断,辽东湾近岸海域塑料垃圾主要是来源于生活塑料垃圾(84.9%)和渔业垃圾(15.1%).在此基础上,建议加强源头管理以减少塑料垃圾进入海洋,主要包括完善当前海洋垃圾分类方法、加强渔业塑料垃圾回收、提升公民保护海洋环境意识和制定国家海洋塑料垃圾行动计划等.展开更多
基金supported by National Health Institute(NIH)grant NS099596(to LW and SPY),NS114221(to LW and SPY)Veterans Affair(VA)SPiRE grant RX003865(to SPY)+1 种基金supported by the O.Wayne Rollins Endowment Fund(to SPY)John E.Steinhaus Endowment Fund(to LW)。
文摘Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This review presents a brief background of the development of novel concepts and their clinical potentials.The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca^(2+)influx is critical for neuronal function.An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca^(2+)mainly via N-methyl-D-aspartate receptors,particularly of those at the extrasynaptic site.This Ca^(2+)-evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity.Furthermore,mild but sustained Ca^(2+)increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic,but gradually set off deteriorating Ca^(2+)-dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways.Based on the Ca^(2+)hypothesis of Alzheimer's disease and recent advances,this Ca^(2+)-activated“silent”degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis.The N-methyl-D-aspartate receptor subunit GluN3A,primarily at the extrasynaptic site,serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity.Ischemic stroke and Alzheimer's disease,therefore,share an N-methyl-D-aspartate receptor-and Ca^(2+)-mediated mechanism,although with much different time courses.It is thus proposed that early interventions to control Ca^(2+)homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia.This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
基金the National Natural Science Foundation of China(No.82003846)the Administration of Traditional Chinese Medicine of Guangdong Province,China(No.20212124).
文摘Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body.Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements,which is supported by the upregulation of glutamine transporters.Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors.Among all cancers,digestive system malignant tumors(DSMTs)have the highest incidence and mortality rates,and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy.Due to the relatively low survival rate and severe side effects associated with DSMTs treatment,new treatment strategies are urgently required.This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs.Additionally,glutamine transportertarget drugs are discussed,providing theoretical guidance for the further development of drugs DSMTs treatment.
基金the National Natural Science Foundation of China(No.82101498 to XW)STI2030-Major Prjects of China(No.20212D0201801 to PH)+1 种基金National Natural Science Foundation of China(No.82171917 to PH,No.82090034 and 31970979 to KW and 32071054 to YT)the 2021 Youth Foundation Training Program of the First Affiliated Hospital of Anhui Medical University(No.2021kj19 to XW).
文摘Background Previous studies havedemonstrated that excitatory repetitive transcranial magnetic stimulation(rTMS)can improve the cognitive function of patients with Alzheimer's disease(AD).Intermittent theta burst stimulation(iTBS)is a novel excitatory rTMS protocol for brain activity stimulation with the ability to induce long-term potentiation-like plasticity and represents a promising treatment for AD.However,the long-term effects of iTBS on cognitive decline and brain structure in patients with AD areunknown.Aims We aimed to explore whether repeating accelerated iTBS every three months could slow down the cognitive decline in patients with AD.Methods In this randomised,assessor-blinded,controlled trial,iTBS was administered to the left dorsolateral prefrontal cortex(DLPFC)of 42 patients with AD for 14days every 13weeks.Measurements included the Montreal Cognitive Assessment(MoCA),a comprehensive neuropsychological battery,and the grey matter volume(GMV)of the hippocampus.Patients were evaluated at baseline and after follow-up.The longitudinal pipeline of the Computational Anatomy Toolbox for SPM was used to detect significant treatment-related changes over time.Results The iTBS group maintained MoCA scores relative to the control group(t=3.26,p=0.013)and reduced hippocampal atrophy,which was significantly correlated with global degeneration scale changes.The baseline Mini-Mental State Examination(MMSE)score,apolipoprotein E genotype and Clinical Dementia Rating were indicative of MoCA scores at follow-up.Moreover,the GMV of the left(t=0.08,p=0.996)and right(t=0.19,p=0.977)hippocampus were maintained in the active group but significantly declined in the control group(left:t=4.13,p<0.001;right:t=5.31,p<0.001).GMV change in the left(r=0.35,p=0.023)and right(r=0.36,p=0.021)hippocampus across the intervention positively correlated with MoCA changes;left hippocampal GMV change was negatively correlated with global degeneration scale(r=-0.32,p=0.041)changes.Conclusions DLPFC-iTBS maybe a feasible and easy-to-implement non-pharmacological intervention to slow down the progressive decline of overall cognition and quality of life in patients with AD,providing a new AD treatment option.Trial registration number NCT04754152.
文摘海洋垃圾已引起国际社会的广泛关注,是当前环境领域热点问题之一.为揭示我国渤海近岸海域海洋垃圾的赋存特征及其分布规律,于2018年丰水期(8月)在辽东湾河口区海域布设6个长度为5~10 km的调查断面,利用拖网同时采集海面漂浮垃圾与海底垃圾,初步调查辽东湾近岸海域海洋垃圾分布和组成特征,并对海洋垃圾来源进行了分析.结果表明:①辽东湾海面漂浮垃圾数量密度为67个km^2,质量密度为741 g km^2;海底垃圾数量密度为19个km^2,质量密度为2544 g km^2.②在所收集的各类海洋垃圾中,塑料类垃圾数量占比约为50.9%,其中海底塑料类垃圾数量占比(62.1%)明显高于海面漂浮塑料垃圾数量占比(37.5%).③由塑料垃圾形态特征和表面带有的标识判断,辽东湾近岸海域塑料垃圾主要是来源于生活塑料垃圾(84.9%)和渔业垃圾(15.1%).在此基础上,建议加强源头管理以减少塑料垃圾进入海洋,主要包括完善当前海洋垃圾分类方法、加强渔业塑料垃圾回收、提升公民保护海洋环境意识和制定国家海洋塑料垃圾行动计划等.