A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effec...A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.展开更多
Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga...Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.展开更多
Background:Liver cancer is one of the major causes of cancer-related deaths globally.Cancer cell stem-ness and chemotherapy resistance contribute to the high mortality.Although evidence indicates that the alpha subuni...Background:Liver cancer is one of the major causes of cancer-related deaths globally.Cancer cell stem-ness and chemotherapy resistance contribute to the high mortality.Although evidence indicates that the alpha subunit of protein kinase 2(CK2α)is involved in several human cancers,its function in liver cancer remains unknown.In the present study,we aimed to elucidate the role of CK2αin liver cancer.Methods:We examined the role of CK2αregulation in stemness and chemotherapy resistance capacity of liver cancer cells.MTT assays,tumor sphere formation assays,RT-PCR,flow cytometry,Western blotting assay,clonogenicity assay,matrigel invasion assay and bioinformatics were conducted in this study.Results:CK2αexpression in the liver cancer tissues was notably upregulated compared with that in the corresponding non-tumorous tissues.The overexpression of CK2αpromoted tumor sphere formation,increased the percentage of CD133(+)and side population cells,caused the resistance of liver cancer cells to 5-FU treatment,increased the expression levels of NANOG,OCT4,SOX2,Gli1 and Ptch1,and enhanced the ability of CD133(+)cell clone formation and invasion.Consistently,the downregulation of CK2αhad the opposite effects.CK2αsilencing inhibited the Hedgehog pathway by reducing the expression of Gli1 and Ptch1.Mechanistically,CK2αregulation on liver cancer cell stemness and chemotherapy resistance was found to be involved in the Hedgehog signaling pathway.Conclusions:Our study may bring some new insights into the occurrence of liver cancer.Furthermore,these findings suggest that targeting CK2αmay be a novel therapeutic strategy for patients with liver cancer.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec...Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.展开更多
Painful stimuli elicit first-line reflexive defensive reactions and,in many cases,also evoke second-line recuperative behaviors,the latter of which reflects the sensing of tissue damage and the alleviation of sufferin...Painful stimuli elicit first-line reflexive defensive reactions and,in many cases,also evoke second-line recuperative behaviors,the latter of which reflects the sensing of tissue damage and the alleviation of suffering.The lateral parabrachial nucleus(lPBN),composed of external-(elPBN),dorsal-(dlPBN),and central/superior-subnuclei(jointly referred to as slPBN),receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption.However,the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear.In this study,we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor(NK1R)(lPBNNK1R)are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle,while elPBN neurons are dispensable for driving such reactions.Notably,lPBNNK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats.Lastly,both lPBNNK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions.Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.展开更多
Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alc...Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ...Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.展开更多
Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a...Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a new type of1,2,3,4-tetrahydro-β-carboline(THC)derivatives and evaluated the in vitro and in vivo bioactivities against the Xanthomonas oryzae pv.oryzae(Xoo),Xanthomonas axonopodis pv.citri(Xac),and Pseudomonas syringae pv.actinidiae(Psa).The in vitro bioassay results exhibited that most title molecules possessed good activity toward the three plant pathogenic bacteria,the compound A17 showed the most active against Xoo and Xac with EC50 values of 7.27 and 4.89 mg mL^(-1)respectively,and compound A8 exhibited the best inhibitory activity against Psa with EC50value of 4.87 mg mL^(-1).Pot experiments showed that compound A17 exhibited excellent in vivo antibacterial activities to manage rice bacterial leaf blight and citrus bacterial canker,with protective efficiencies of 52.67 and 79.79%at 200 mgmL^(-1),respectively.Meanwhile,compound A8 showed good control efficiency(84.31%)against kiwifruit bacterial canker at 200 mg mL^(-1).Antibacterial mechanism suggested that these compounds could interfere with the balance of the redox system,damage the cell membrane,and induce the apoptosis of Xoo cells.Taken together,our study revealed that tetrahydro-β-carboline derivatives could be a promising candidate model for novel broadspectrum bactericides.展开更多
Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o...Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.展开更多
The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Her...The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications.展开更多
Background:Apolipoprotein E4(ApoE4)allele is the strongest genetic risk factor for late-onset Alzheimer's disease,and it can aggravate depressive symptoms in non-AD patients.However,the impact of ApoE4 on AD-assoc...Background:Apolipoprotein E4(ApoE4)allele is the strongest genetic risk factor for late-onset Alzheimer's disease,and it can aggravate depressive symptoms in non-AD patients.However,the impact of ApoE4 on AD-associated depression-l ike behaviors and its underlying pathogenic mechanisms remain unclear.Methods:This study developed a 5xFAD mouse model overexpressing human ApoE4(E4FAD).Behavioral assessments and synaptic function tests were conducted to explore the effects of ApoE4 on cognition and depression in 5xFAD mice.Changes in peripheral and central lipid metabolism,as well as the levels of serotonin(5-HT)andγ-aminobutyric acid(GABA)neurotransmitters in the prefrontal cortex,were examined.In addition,the protein levels of 24-dehydrocholesterol reductase/glycogen synthase kinase-3 beta/mammalian target of rapamycin(DHCR24/GSK3β/m TOR)and postsynaptic density protein 95/calmodulin-dependent protein kinase II/brain-derived neurotrophic factor(PSD95/CaMK-II/BDNF)were measured to investigate the molecular mechanism underlying the effects of ApoE4 on AD mice.Results:Compared with 5xFAD mice,E4FAD mice exhibited more severe depressionlike behaviors and cognitive impairments.These mice also exhibited increased amyloid-beta deposition in the hippocampus,increased astrocyte numbers,and decreased expression of depression-related neurotransmitters 5-HT and GABA in the prefrontal cortex.Furthermore,lipid metabolism disorders were observed in E4FAD,manifesting as elevated low-density lipoprotein cholesterol and reduced high-density lipoprotein cholesterol in peripheral blood,decreased cholesterol level in the prefrontal cortex,and reduced expression of key enzymes and proteins related to cholesterol synthesis and homeostasis.Abnormal expression of proteins related to the DHCR24/GSK3β/m TOR and PSD95/CaMK-II/BDNF pathways was also observed.Conclusion:This study found that ApoE4 overexpression exacerbates depressionlike behaviors in 5xFAD mice and confirmed that ApoE4 reduces cognitive function in these mice.The mechanism may involve the induction of central and peripheral lipid metabolism disorders.Therefore,modulating ApoE expression or function to restore cellular lipid homeostasis may be a promising therapeutic target for AD comorbid with depression.This study also provided a better animal model for studying AD comorbid with depression.展开更多
Sensitive monitoring of the target products during the biosynthesis process is crucial,and facile analytical approaches are urgently needed.Herein,phosphatidylserine(PS)was chosen as the model target,a colorimetric ap...Sensitive monitoring of the target products during the biosynthesis process is crucial,and facile analytical approaches are urgently needed.Herein,phosphatidylserine(PS)was chosen as the model target,a colorimetric aptasensor was developed for the rapid quantitation in biosynthesis samples.A chimeric aptamer was constructed with two homogeneous original PS aptamers.Specific recognition between the chimeric aptamer and PS results in the desorption of aptamer from the surface of the AuNPs nanozyme,and the peroxidase-like enzymatic activity of the AuNPs nanozyme was weakened in a relationship with the different concentrations.The developed aptasensor performed well when applied for analyzing PS in biosynthesis samples.The aptasensor offers good sensitivity and selectivity,under optimal conditions,achieving monitoring and quantitation of PS in the range of 2.5-80.0μmol/L,with a limit of detection at 536.2 nmol/L.Moreover,the aptasensor provides good accuracy,with comparison rates of 98.17%-106.40%,when compared with the HPLC-ELSD.This study provides a good reference for monitoring other biosynthesized products and promoting the development of aptamers and aptasensors in real-world applications.展开更多
BACKGROUND Esophageal cancer(EC)often occurs in the elderly,with approximately 33%of patients aged≥75 years at the time of diagnosis.AIM To evaluate the prognostic factors for radiotherapy(RT)in elderly patients with...BACKGROUND Esophageal cancer(EC)often occurs in the elderly,with approximately 33%of patients aged≥75 years at the time of diagnosis.AIM To evaluate the prognostic factors for radiotherapy(RT)in elderly patients with unresectable EC.METHODS We retrospectively analyzed the clinical characteristics,toxic reactions,and survival information of EC patients aged≥75 years who underwent intensity-modulated RT at Lu’an Hospital of Anhui Medical University between January 2016 and September 2023.Kaplan-Meier analysis was used to draw the overall survival(OS)curves,and Cox regression analysis was employed to evaluate the influence of various clinical factors on the prognosis.RESULTS A total of 139 patients were enrolled.The median follow-up time was 52.0 months.The median OS was 20.0 months.The 1-year,2-year,3-year,and 5-year OS rates were 69.8%,38.7%,28.2%,and 17.5%,respectively.Univariate analysis showed that age,radiation dose,and chemotherapy had no significant impact on prognosis.Multivariate analysis indicated that clinical stage[Ⅲ-Ⅳa vsⅠ-Ⅱ,hazard ratio(HR)=2.421,95%confidence interval(CI):1.242-4.718,P=0.009;IVb vsⅠ-Ⅱ,HR=4.222,95%CI:1.888-9.438,P<0.001),Charlson comorbidity index(CCI)(0 vs≥1,HR=1.539,95%CI:1.015-2.332,P=0.042),and nutritional risk screening 2002(NRS2002)(<3 vs≥3,HR=2.491,95%CI:1.601-3.875,P<0.001)were independent prognostic factors for OS.CONCLUSION Our results suggest that CCI and NRS2002 were independent prognostic factors of OS for unresectable elderly EC patients undergoing RT.For elderly patients with EC,full attention should be given to biological age-related indicators,such as comorbidities and nutrition,when formulating treatment protocols.These factors should be considered in future clinical practice.展开更多
Diabetes is a pervasive and serious global health issue.According to the International Diabetes Federation report,463 million adults worldwide were living with diabetes in 2019,and this number is projected to reach 70...Diabetes is a pervasive and serious global health issue.According to the International Diabetes Federation report,463 million adults worldwide were living with diabetes in 2019,and this number is projected to reach 700 million in 2045^([1]).展开更多
基金the support from the National Key R&D Program of China(No.2018YFC1901606).
文摘A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.
文摘Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.
基金supported by grants from the National Natu-ral Science Foundation of China (81602589 and 81601692)345 Talent Program of Shengjing Hospital
文摘Background:Liver cancer is one of the major causes of cancer-related deaths globally.Cancer cell stem-ness and chemotherapy resistance contribute to the high mortality.Although evidence indicates that the alpha subunit of protein kinase 2(CK2α)is involved in several human cancers,its function in liver cancer remains unknown.In the present study,we aimed to elucidate the role of CK2αin liver cancer.Methods:We examined the role of CK2αregulation in stemness and chemotherapy resistance capacity of liver cancer cells.MTT assays,tumor sphere formation assays,RT-PCR,flow cytometry,Western blotting assay,clonogenicity assay,matrigel invasion assay and bioinformatics were conducted in this study.Results:CK2αexpression in the liver cancer tissues was notably upregulated compared with that in the corresponding non-tumorous tissues.The overexpression of CK2αpromoted tumor sphere formation,increased the percentage of CD133(+)and side population cells,caused the resistance of liver cancer cells to 5-FU treatment,increased the expression levels of NANOG,OCT4,SOX2,Gli1 and Ptch1,and enhanced the ability of CD133(+)cell clone formation and invasion.Consistently,the downregulation of CK2αhad the opposite effects.CK2αsilencing inhibited the Hedgehog pathway by reducing the expression of Gli1 and Ptch1.Mechanistically,CK2αregulation on liver cancer cell stemness and chemotherapy resistance was found to be involved in the Hedgehog signaling pathway.Conclusions:Our study may bring some new insights into the occurrence of liver cancer.Furthermore,these findings suggest that targeting CK2αmay be a novel therapeutic strategy for patients with liver cancer.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported by the National Natural Science Foundation of China,No.82171270 (to ZL)Public Service Platform for Artificial In telligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1 (to ZL)+3 种基金the Natural Science Foundation of Beijing,No.Z200016 (to ZL)Beijing Talents Project,No.2018000021223ZK03 (to ZL)Beijing Municipal Committee of Science and Technology,No.Z201 100005620010 (to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029 (to YongW)。
文摘Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
基金supported by the Shenzhen Key Laboratory of Drug Addiction (ZDSYS20190902093601675)CAS Key Laboratory of Brain Connectome and Manipulation (2019DP173024)+2 种基金National Natural Science Foundation of China (82274358)Shenzhen-Hong Kong Institute of Brain ScienceGuangdong Basic and Applied Basic Research Foundation (2023B1515040009)
文摘Painful stimuli elicit first-line reflexive defensive reactions and,in many cases,also evoke second-line recuperative behaviors,the latter of which reflects the sensing of tissue damage and the alleviation of suffering.The lateral parabrachial nucleus(lPBN),composed of external-(elPBN),dorsal-(dlPBN),and central/superior-subnuclei(jointly referred to as slPBN),receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption.However,the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear.In this study,we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor(NK1R)(lPBNNK1R)are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle,while elPBN neurons are dispensable for driving such reactions.Notably,lPBNNK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats.Lastly,both lPBNNK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions.Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.
基金supported by the National Key Research and Development Program of China:Investigate the mechanism of formation and control technologies of Chinese traditional and ethnic food quality(2021YFD2100100)。
文摘Oyster(Crassostrea gigas),the main ingredient of oyster sauce,has a strong umami taste.In this study,three potential umami peptides,FLNQDEEAR(FR-9),FNKEE(FE-5),and EEFLK(EK-5),were identified and screened from the alcoholic extracts of the oyster using nano-HPLC-MS/MS analysis,i Umami-Scoring Card Method(i Umami-SCM)database and molecular docking(MD).Sensory evaluation and electronic tongue analysis were further used to confirm their tastes.The threshold of the three peptides ranged from 0.38 to 0.55 mg/m L.MD with umami receptors T1R1/T1R3 indicated that the electrostatic interaction and hydrogen bond interaction were the main forces involved.Besides,the Phe592 and Gln853 of T1R3 were the primary docking site for MD and played an important role in umami intensity.Peptides with two Glu residues at the terminus had stronger umami,especially at the C-terminus.These results contribute to the understanding of umami peptides in oysters and the interaction mechanism between umami peptides and umami receptors.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金the support from the National Natural Science Foundation of China(Grant No.22179006)supported by the Beijing Natural Science Foundation(2244101)+1 种基金the National Natural Science Foundation of China(Grant No.52072036)the SINOPEC project(223128)。
文摘Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.
基金the supports from National Natural Science Foundation of China(21877021,32160661,and 32202359)the Guizhou Provincial S&T Project China(2018[4007])+2 种基金the the Guizhou Province China[Qianjiaohe KY number(2020)004]the Program of Introducing Talents of Discipline to Universities of China(D20023,111 Program)the Guizhou University(GZU)Found for Newly Enrolled Talent China(202229)。
文摘Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a new type of1,2,3,4-tetrahydro-β-carboline(THC)derivatives and evaluated the in vitro and in vivo bioactivities against the Xanthomonas oryzae pv.oryzae(Xoo),Xanthomonas axonopodis pv.citri(Xac),and Pseudomonas syringae pv.actinidiae(Psa).The in vitro bioassay results exhibited that most title molecules possessed good activity toward the three plant pathogenic bacteria,the compound A17 showed the most active against Xoo and Xac with EC50 values of 7.27 and 4.89 mg mL^(-1)respectively,and compound A8 exhibited the best inhibitory activity against Psa with EC50value of 4.87 mg mL^(-1).Pot experiments showed that compound A17 exhibited excellent in vivo antibacterial activities to manage rice bacterial leaf blight and citrus bacterial canker,with protective efficiencies of 52.67 and 79.79%at 200 mgmL^(-1),respectively.Meanwhile,compound A8 showed good control efficiency(84.31%)against kiwifruit bacterial canker at 200 mg mL^(-1).Antibacterial mechanism suggested that these compounds could interfere with the balance of the redox system,damage the cell membrane,and induce the apoptosis of Xoo cells.Taken together,our study revealed that tetrahydro-β-carboline derivatives could be a promising candidate model for novel broadspectrum bactericides.
基金sponsored by National Natural Science Foundation of China (81800703 and 81970701)Beijing Nova Program (Z201100006820117 and 20220484181)+7 种基金Beijing Municipal Natural Science Foundation (7184252 and 7214258)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (BMU2021MX013)Peking University Clinical Scientist Training Program (BMU2023PYJH022)China Endocrine and Metabolism Young Scientific Talent Research Project (2022-N-02-01)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation (G2018030)。
文摘Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.
基金National Natural Science Foundation of China,Grant/Award Number:22179006Natural Science Foundation of Zhejiang Province,Grant/Award Number:LQ23E020002+4 种基金National Natural Science Foundation of China,Grant/Award Numbers:52202284,52072036Cooperation between Industry and Education Project of Ministry of Education,Grant/Award Number:220601318235513WenZhou Natural Science Foundation,Grant/Award Numbers:G20220019,G20220021State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Grant/Award Number:EIPE22208Key Research and Development Program of Henan province,China,Grant/Award Number:231111242500。
文摘The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications.
基金CAMS initiative for Innovative Medicine of China,Grant/Award Number:2021-I2M-1-034。
文摘Background:Apolipoprotein E4(ApoE4)allele is the strongest genetic risk factor for late-onset Alzheimer's disease,and it can aggravate depressive symptoms in non-AD patients.However,the impact of ApoE4 on AD-associated depression-l ike behaviors and its underlying pathogenic mechanisms remain unclear.Methods:This study developed a 5xFAD mouse model overexpressing human ApoE4(E4FAD).Behavioral assessments and synaptic function tests were conducted to explore the effects of ApoE4 on cognition and depression in 5xFAD mice.Changes in peripheral and central lipid metabolism,as well as the levels of serotonin(5-HT)andγ-aminobutyric acid(GABA)neurotransmitters in the prefrontal cortex,were examined.In addition,the protein levels of 24-dehydrocholesterol reductase/glycogen synthase kinase-3 beta/mammalian target of rapamycin(DHCR24/GSK3β/m TOR)and postsynaptic density protein 95/calmodulin-dependent protein kinase II/brain-derived neurotrophic factor(PSD95/CaMK-II/BDNF)were measured to investigate the molecular mechanism underlying the effects of ApoE4 on AD mice.Results:Compared with 5xFAD mice,E4FAD mice exhibited more severe depressionlike behaviors and cognitive impairments.These mice also exhibited increased amyloid-beta deposition in the hippocampus,increased astrocyte numbers,and decreased expression of depression-related neurotransmitters 5-HT and GABA in the prefrontal cortex.Furthermore,lipid metabolism disorders were observed in E4FAD,manifesting as elevated low-density lipoprotein cholesterol and reduced high-density lipoprotein cholesterol in peripheral blood,decreased cholesterol level in the prefrontal cortex,and reduced expression of key enzymes and proteins related to cholesterol synthesis and homeostasis.Abnormal expression of proteins related to the DHCR24/GSK3β/m TOR and PSD95/CaMK-II/BDNF pathways was also observed.Conclusion:This study found that ApoE4 overexpression exacerbates depressionlike behaviors in 5xFAD mice and confirmed that ApoE4 reduces cognitive function in these mice.The mechanism may involve the induction of central and peripheral lipid metabolism disorders.Therefore,modulating ApoE expression or function to restore cellular lipid homeostasis may be a promising therapeutic target for AD comorbid with depression.This study also provided a better animal model for studying AD comorbid with depression.
基金supported by the National Natural Science Foundation of China(31922072)the Natural Science Foundation of Shandong Province(ZR2020JQ15)the Taishan Scholar Project of Shandong Province(tsqn201812020)。
文摘Sensitive monitoring of the target products during the biosynthesis process is crucial,and facile analytical approaches are urgently needed.Herein,phosphatidylserine(PS)was chosen as the model target,a colorimetric aptasensor was developed for the rapid quantitation in biosynthesis samples.A chimeric aptamer was constructed with two homogeneous original PS aptamers.Specific recognition between the chimeric aptamer and PS results in the desorption of aptamer from the surface of the AuNPs nanozyme,and the peroxidase-like enzymatic activity of the AuNPs nanozyme was weakened in a relationship with the different concentrations.The developed aptasensor performed well when applied for analyzing PS in biosynthesis samples.The aptasensor offers good sensitivity and selectivity,under optimal conditions,achieving monitoring and quantitation of PS in the range of 2.5-80.0μmol/L,with a limit of detection at 536.2 nmol/L.Moreover,the aptasensor provides good accuracy,with comparison rates of 98.17%-106.40%,when compared with the HPLC-ELSD.This study provides a good reference for monitoring other biosynthesized products and promoting the development of aptamers and aptasensors in real-world applications.
基金Supported by the Science and Technology Program of Lu’an,No.2022 Lakj042.
文摘BACKGROUND Esophageal cancer(EC)often occurs in the elderly,with approximately 33%of patients aged≥75 years at the time of diagnosis.AIM To evaluate the prognostic factors for radiotherapy(RT)in elderly patients with unresectable EC.METHODS We retrospectively analyzed the clinical characteristics,toxic reactions,and survival information of EC patients aged≥75 years who underwent intensity-modulated RT at Lu’an Hospital of Anhui Medical University between January 2016 and September 2023.Kaplan-Meier analysis was used to draw the overall survival(OS)curves,and Cox regression analysis was employed to evaluate the influence of various clinical factors on the prognosis.RESULTS A total of 139 patients were enrolled.The median follow-up time was 52.0 months.The median OS was 20.0 months.The 1-year,2-year,3-year,and 5-year OS rates were 69.8%,38.7%,28.2%,and 17.5%,respectively.Univariate analysis showed that age,radiation dose,and chemotherapy had no significant impact on prognosis.Multivariate analysis indicated that clinical stage[Ⅲ-Ⅳa vsⅠ-Ⅱ,hazard ratio(HR)=2.421,95%confidence interval(CI):1.242-4.718,P=0.009;IVb vsⅠ-Ⅱ,HR=4.222,95%CI:1.888-9.438,P<0.001),Charlson comorbidity index(CCI)(0 vs≥1,HR=1.539,95%CI:1.015-2.332,P=0.042),and nutritional risk screening 2002(NRS2002)(<3 vs≥3,HR=2.491,95%CI:1.601-3.875,P<0.001)were independent prognostic factors for OS.CONCLUSION Our results suggest that CCI and NRS2002 were independent prognostic factors of OS for unresectable elderly EC patients undergoing RT.For elderly patients with EC,full attention should be given to biological age-related indicators,such as comorbidities and nutrition,when formulating treatment protocols.These factors should be considered in future clinical practice.
基金The Central Universities,Lanzhou University,China [lzujbky-2021-ey07]the innovative talent project of Lanzhou city[Lanzhou science and technology bureau, 2022-RC-42 to BL]Gansu Province Young Doctoral Fund Project [2021QB005]
文摘Diabetes is a pervasive and serious global health issue.According to the International Diabetes Federation report,463 million adults worldwide were living with diabetes in 2019,and this number is projected to reach 700 million in 2045^([1]).