BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proli...BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proliferation-related genes with prognosis in HER2+breast cancer(BC)patients is unclear.AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+BC.METHODS First,we obtained the mRNA expression profiles and clinical information of HER2+BC patients from the TCGA and METABRIC public databases.A four gene prediction model comprising PROM2,SLC7A11,FANCD2,and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort.Patients were stratified into high-risk and low-risk groups based on their median risk score,an independent predictor of overall survival(OS).Based on these findings,immune infiltration,mutations,and medication sensitivity were analyzed in various risk groupings.Additionally,we assessed patient prognosis by combining the tumor mutation burden(TMB)with risk score.Finally,we evaluated the expression of critical genes by analyzing single-cell RNA sequencing(scRNA-seq)data from malignant vs normal epithelial cells.RESULTS We found that the higher the risk score was,the worse the prognosis was(P<0.05).We also found that the immune cell infiltration,mutation,and drug sensitivity were different between the different risk groups.The highrisk subgroup was associated with lower immune scores and high TMB.Moreover,we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses.HRisk-HTMB patients had the worst prognosis,whereas LRisk-LTMB patients had the best prognosis(P<0.0001).Analysis of the scRNAseq data showed that PROM2,SLC7A11,and FANCD2 were significantly differentially expressed,whereas FH was not,suggesting that these genes are expressed mainly in cancer epithelial cells(P<0.01).CONCLUSION Our model helps guide the prognosis of HER2+breast cancer patients,and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.展开更多
Hydrogen sulfide,which can be generated in the central nervous system from the sulfhydryl-containing amino acid,L-cysteine,by cystathionine-β-synthase,may exert protective effects in experimental subarachnoid hemorrh...Hydrogen sulfide,which can be generated in the central nervous system from the sulfhydryl-containing amino acid,L-cysteine,by cystathionine-β-synthase,may exert protective effects in experimental subarachnoid hemorrhage;however,the mechanism underlying this effect is unknown.This study explored the mechanism using a subarachnoid hemorrhage rat model induced by an endovascular perforation technique.Rats were treated with an intraperitoneal injection of 100 mM L-cysteine(30μL)30 minutes after subarachnoid hemorrhage.At 48 hours after subarachnoid hemorrhage,hematoxylin-eosin staining was used to detect changes in prefrontal cortex cells.L-cysteine significantly reduced cell edema.Neurological function was assessed using a modified Garcia score.Brain water content was measured by the wet-dry method.L-cysteine significantly reduced neurological deficits and cerebral edema after subarachnoid hemorrhage.Immunofluorescence was used to detect the number of activated microglia.Reverse transcription-polymerase chain reaction(RT-PCR)was used to detect the levels of interleukin 1β and CD86 mRNA in the prefrontal cortex.L-cysteine inhibited microglial activation in the prefrontal cortex and reduced the mRNA levels of interleukin 1βand CD86.RT-PCR and western blot analysis of the complement system showed that L-cysteine reduced expression of the complement factors,C1q,C3αand its receptor C3aR1,and the deposition of C1q in the prefrontal cortex.Dihydroethidium staining was applied to detect changes in reactive oxygen species,and immunohistochemistry was used to detect the number of NRF2-and HO-1-positive cells.L-cysteine reduced the level of reactive oxygen species in the prefrontal cortex and the number of NRF2-and HO-1-positive cells.Western blot assays and immunohistochemistry were used to detect the protein levels of CHOP and GRP78 in the prefrontal cortex and the number of CHOP-and GRP78-positive cells.L-cysteine reduced CHOP and GRP78 levels and the number of CHOP-and GRP78-positive cells.The cystathionine-β-synthase inhibitor,aminooxyacetic acid,significantly reversed the above neuroprotective effects of L-cysteine.Taken together,L-cysteine can play a neuroprotective role by regulating neuroinflammation,complement deposition,oxidative stress and endoplasmic reticulum stress.The study was approved by the Animals Ethics Committee of Shandong University,China on February 22,2016(approval No.LL-201602022).展开更多
Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing.Here,we demonstrate a hybrid photonic-atom chip platform based on a Ga N-onsapphire chip a...Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing.Here,we demonstrate a hybrid photonic-atom chip platform based on a Ga N-onsapphire chip and the transport of an ensemble of atoms from free space towards the chip with an optical conveyor belts.Due to our platform’s complete optical accessibility and careful control of atomic motion near the chip with a conveyor belt,successful atomic transport towards the chip is made possible.The maximum transport efficiency of atoms is about 50%with a transport distance of 500μm.Our results open up a new route toward the efficient loading of cold atoms into the evanescent-field trap formed by the photonic integrated circuits,which promises strong and controllable interactions between single atoms and single photons.展开更多
基金The Science and Technology Commission of Shanxi province,No.201901D111428.
文摘BACKGROUND Ferroptosis has recently been associated with multiple degenerative diseases.Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases.However,the association of iron proliferation-related genes with prognosis in HER2+breast cancer(BC)patients is unclear.AIM To identify and evaluate fresh ferroptosis-related biomarkers for HER2+BC.METHODS First,we obtained the mRNA expression profiles and clinical information of HER2+BC patients from the TCGA and METABRIC public databases.A four gene prediction model comprising PROM2,SLC7A11,FANCD2,and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort.Patients were stratified into high-risk and low-risk groups based on their median risk score,an independent predictor of overall survival(OS).Based on these findings,immune infiltration,mutations,and medication sensitivity were analyzed in various risk groupings.Additionally,we assessed patient prognosis by combining the tumor mutation burden(TMB)with risk score.Finally,we evaluated the expression of critical genes by analyzing single-cell RNA sequencing(scRNA-seq)data from malignant vs normal epithelial cells.RESULTS We found that the higher the risk score was,the worse the prognosis was(P<0.05).We also found that the immune cell infiltration,mutation,and drug sensitivity were different between the different risk groups.The highrisk subgroup was associated with lower immune scores and high TMB.Moreover,we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses.HRisk-HTMB patients had the worst prognosis,whereas LRisk-LTMB patients had the best prognosis(P<0.0001).Analysis of the scRNAseq data showed that PROM2,SLC7A11,and FANCD2 were significantly differentially expressed,whereas FH was not,suggesting that these genes are expressed mainly in cancer epithelial cells(P<0.01).CONCLUSION Our model helps guide the prognosis of HER2+breast cancer patients,and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.
基金supported by the National Natural Science Foundation of China,Nos.81873768 and 81671213(to ZW),81571284 and 81874083(to GL)the Key Research and Development Foundation of Shandong Province of China,No.2017GSF218091(to ZW)+2 种基金the Natural Science Foundation of Shandong Province of China,No.ZR2016HM33(to DXL)the Shandong Medical and Health Science and Technology Development Plan Project of China,No.2017WS068(to QH)the Taishan Scholars of Shandong Province of China,No.ts201511093(to GL)
文摘Hydrogen sulfide,which can be generated in the central nervous system from the sulfhydryl-containing amino acid,L-cysteine,by cystathionine-β-synthase,may exert protective effects in experimental subarachnoid hemorrhage;however,the mechanism underlying this effect is unknown.This study explored the mechanism using a subarachnoid hemorrhage rat model induced by an endovascular perforation technique.Rats were treated with an intraperitoneal injection of 100 mM L-cysteine(30μL)30 minutes after subarachnoid hemorrhage.At 48 hours after subarachnoid hemorrhage,hematoxylin-eosin staining was used to detect changes in prefrontal cortex cells.L-cysteine significantly reduced cell edema.Neurological function was assessed using a modified Garcia score.Brain water content was measured by the wet-dry method.L-cysteine significantly reduced neurological deficits and cerebral edema after subarachnoid hemorrhage.Immunofluorescence was used to detect the number of activated microglia.Reverse transcription-polymerase chain reaction(RT-PCR)was used to detect the levels of interleukin 1β and CD86 mRNA in the prefrontal cortex.L-cysteine inhibited microglial activation in the prefrontal cortex and reduced the mRNA levels of interleukin 1βand CD86.RT-PCR and western blot analysis of the complement system showed that L-cysteine reduced expression of the complement factors,C1q,C3αand its receptor C3aR1,and the deposition of C1q in the prefrontal cortex.Dihydroethidium staining was applied to detect changes in reactive oxygen species,and immunohistochemistry was used to detect the number of NRF2-and HO-1-positive cells.L-cysteine reduced the level of reactive oxygen species in the prefrontal cortex and the number of NRF2-and HO-1-positive cells.Western blot assays and immunohistochemistry were used to detect the protein levels of CHOP and GRP78 in the prefrontal cortex and the number of CHOP-and GRP78-positive cells.L-cysteine reduced CHOP and GRP78 levels and the number of CHOP-and GRP78-positive cells.The cystathionine-β-synthase inhibitor,aminooxyacetic acid,significantly reversed the above neuroprotective effects of L-cysteine.Taken together,L-cysteine can play a neuroprotective role by regulating neuroinflammation,complement deposition,oxidative stress and endoplasmic reticulum stress.The study was approved by the Animals Ethics Committee of Shandong University,China on February 22,2016(approval No.LL-201602022).
基金supported by the National Key R&D Program(Grant No.2021YFF0603701)the National Natural Science Foundation of China(Grant Nos.U21A20433,U21A6006,92265210,12104441,12134014,61905234,and 11974335)+1 种基金the USTC Research Funds of the Double First-Class Initiative(Grant No.YD2030002007),USTC Research Funds of the Double First-Class Initiativesupported by the Fundamental Research Funds for the Central Universities。
文摘Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing.Here,we demonstrate a hybrid photonic-atom chip platform based on a Ga N-onsapphire chip and the transport of an ensemble of atoms from free space towards the chip with an optical conveyor belts.Due to our platform’s complete optical accessibility and careful control of atomic motion near the chip with a conveyor belt,successful atomic transport towards the chip is made possible.The maximum transport efficiency of atoms is about 50%with a transport distance of 500μm.Our results open up a new route toward the efficient loading of cold atoms into the evanescent-field trap formed by the photonic integrated circuits,which promises strong and controllable interactions between single atoms and single photons.