Flood events and their impact on crops are extremely significant scientific research issues; however, flood monitoring is an exceedingly complicated process. Flood damages on crops are directly related to yield change...Flood events and their impact on crops are extremely significant scientific research issues; however, flood monitoring is an exceedingly complicated process. Flood damages on crops are directly related to yield change, which requires accurate assessment to quantify the damages. Various remote sensing products and indices have been used in the past for this purpose. This paper utilizes the moderate resolution imaging spectroradiometer (MODIS) weekly normalized difference vegetation index (NDVI) product to detect and further quantify flood damages on corn within the major corn producing states in the Midwest region of the US. County-level analyses were performed by taking weighted average of all pure corn pixels (〉90%) masked by the United States Department of Agriculture (USDA) Cropland Data Layer (CDL). The NDVI-based time-series difference between flood years and normal year (median of years 2000-2014) was used to detect flood occur- rences. To further measure the impact of the flood on corn yield, regression analysis between change in NDVI and change in corn yield as independent and dependent variables respectively was performed for 30 different flooding events within growing seasons of the corn. With the R2 value of 0.85, the model indicates statistically significant linear relation between the NDVI and corn yield. Testing the predictability of the model with 10 new cases, the average relative error of the model was only 4.47%. Furthermore, small error (4.8%) of leave-one-out cross validation (LOOCV) along with smaller statistical error indicators (root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE)), further validated the accuracy of the model. Utilizing the linear regression approach, change in NDVI during the growing season of corn appeared to be a good indicator to quantify the yield loss due to flood. Additionally, with the 250 m MODIS-based NDVI, these yield losses can be estimated up to field level.展开更多
Floods often cause significant crop loss in the United States. Timely and objective information on flood-related crop loss, such as flooded acreage and degree of crop damage, is very important for crop monitoring and ...Floods often cause significant crop loss in the United States. Timely and objective information on flood-related crop loss, such as flooded acreage and degree of crop damage, is very important for crop monitoring and risk management in ag- ricultural and disaster-related decision-making at many concerned agencies. Currently concerned agencies mostly rely on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. The results from such methods suffer from inaccuracy, subjectiveness, untimeliness, and lack of reproducibility. Recent studies have demonstrated that Earth observation (EO) data could be used in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. However, there is no operational decision support system, which employs such EO-based data and algorithms for operational flood-related crop decision-making. This paper describes the development of an EO-based flood crop loss assessment cyber-service system, RF-CLASS, for supporting flood-related crop statistics and insurance decision-making. Based on the service-orientated architecture, RF-CLASS has been implemented with open interoperability specifications to facilitate the interoperability with EO data systems, particularly the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS), for automatically fetching the input data from the data systems. Validated EO algorithms have been implemented as web services in the system to operationally produce a set of flood-related products from EO data, such as flood frequency, flooded acreage, and degree of crop damage, for supporting decision-making in flood statistics and flood crop insurance policy. The system leverages recent advances in the remote sensing-based flood monitoring and assessment, the near-real-time availability of EO data, the service-oriented architecture, geospatial interoperability standards, and the standard-based geospatial web service technology. The prototypical system has automatically generated the flood crop loss products and demonstrated the feasibility of using such products to improve the agricultural decision-making. Evaluation of system by the end-user agencies indicates that significant improvement on flood-related crop decision-making has been achieved with the system.展开更多
基金supported by grants from the National Aeronautics and Space Administration (NASA) of the United States (NNX12AQ31G and NNX12AQ31G NNX14AP91G,PI:Dr.Liping Di)
文摘Flood events and their impact on crops are extremely significant scientific research issues; however, flood monitoring is an exceedingly complicated process. Flood damages on crops are directly related to yield change, which requires accurate assessment to quantify the damages. Various remote sensing products and indices have been used in the past for this purpose. This paper utilizes the moderate resolution imaging spectroradiometer (MODIS) weekly normalized difference vegetation index (NDVI) product to detect and further quantify flood damages on corn within the major corn producing states in the Midwest region of the US. County-level analyses were performed by taking weighted average of all pure corn pixels (〉90%) masked by the United States Department of Agriculture (USDA) Cropland Data Layer (CDL). The NDVI-based time-series difference between flood years and normal year (median of years 2000-2014) was used to detect flood occur- rences. To further measure the impact of the flood on corn yield, regression analysis between change in NDVI and change in corn yield as independent and dependent variables respectively was performed for 30 different flooding events within growing seasons of the corn. With the R2 value of 0.85, the model indicates statistically significant linear relation between the NDVI and corn yield. Testing the predictability of the model with 10 new cases, the average relative error of the model was only 4.47%. Furthermore, small error (4.8%) of leave-one-out cross validation (LOOCV) along with smaller statistical error indicators (root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE)), further validated the accuracy of the model. Utilizing the linear regression approach, change in NDVI during the growing season of corn appeared to be a good indicator to quantify the yield loss due to flood. Additionally, with the 250 m MODIS-based NDVI, these yield losses can be estimated up to field level.
基金supported by grants from the National Aeronautics and Space Administration Applied Science Program,USA (NNX12AQ31G,NNX14AP91G,PI:Dr.Liping Di)
文摘Floods often cause significant crop loss in the United States. Timely and objective information on flood-related crop loss, such as flooded acreage and degree of crop damage, is very important for crop monitoring and risk management in ag- ricultural and disaster-related decision-making at many concerned agencies. Currently concerned agencies mostly rely on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. The results from such methods suffer from inaccuracy, subjectiveness, untimeliness, and lack of reproducibility. Recent studies have demonstrated that Earth observation (EO) data could be used in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. However, there is no operational decision support system, which employs such EO-based data and algorithms for operational flood-related crop decision-making. This paper describes the development of an EO-based flood crop loss assessment cyber-service system, RF-CLASS, for supporting flood-related crop statistics and insurance decision-making. Based on the service-orientated architecture, RF-CLASS has been implemented with open interoperability specifications to facilitate the interoperability with EO data systems, particularly the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS), for automatically fetching the input data from the data systems. Validated EO algorithms have been implemented as web services in the system to operationally produce a set of flood-related products from EO data, such as flood frequency, flooded acreage, and degree of crop damage, for supporting decision-making in flood statistics and flood crop insurance policy. The system leverages recent advances in the remote sensing-based flood monitoring and assessment, the near-real-time availability of EO data, the service-oriented architecture, geospatial interoperability standards, and the standard-based geospatial web service technology. The prototypical system has automatically generated the flood crop loss products and demonstrated the feasibility of using such products to improve the agricultural decision-making. Evaluation of system by the end-user agencies indicates that significant improvement on flood-related crop decision-making has been achieved with the system.