期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Wetting-drying effect on the strength and microstructure of cementphosphogypsum stabilized soils
1
作者 lingling zeng Xia Bian +1 位作者 Jiaxing Weng Tao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1049-1058,共10页
Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of... Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of phosphogypsum on the physicomechnical properties of stabilized soil subjected to wettingedrying cycles is not well understood to date.In this study,the effect of phosphogypsum on the durability of stabilized soil was studied by conducting a series of laboratory experiments,illustrating the changes in mass loss,pH value and unconfined compressive strength(qu)with wettingdrying cycles.The test results showed that the presence of phosphogypsum significantly restrained the mass loss in the early stage(lower than the 4th cycle),which in turn led to a higher qu of stabilized soil than that without phosphogypsum.After the 4th cycle,a sudden increase in mass loss was observed for stabilized soil with phosphogypsum,resulting in a significant drop in qu to a value lower than those without phosphogypsum at the 6th cycle.In addition,the qu of stabilized soils correlated well with the measured soil pH irrespective of phosphogypsum content for all wettingedrying tests.According to the microstructure observation via scanning electron microscope(SEM)and X-ray diffraction(XRD)tests,the mechanisms relating the sudden loss of qu for the stabilized soils with phosphogypsum after the 4th wetting-drying cycle are summarized as follows:(i)the disappearance of ettringite weakening the cementation bonding effect,(ii)the generation of a larger extent of microcrack,and(iii)a lower pH value,in comparison with the stabilized soil without phosphogypsum. 展开更多
关键词 Wetting-drying PHOSPHOGYPSUM MICROSTRUCTURE DURABILITY
下载PDF
Fabric changes induced by super-absorbent polymer on cementelime stabilized excavated clayey soil 被引量:5
2
作者 Xia Bian lingling zeng +3 位作者 Xiaozhao Li Xiusong Shi Shuming Zhou Fuqing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1124-1135,共12页
This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized s... This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized soil were analyzed with respect to the variation of SAP content,water content,lime content and curing time,using mercury intrusion porosimetry(MIP)tests.It can be observed that the delimitation pore diameter between inter-and intra-aggregate pores was 0.2 mm for the studied soil,determined through the intrusion/extrusion cycles.Experimental results showed that fabric in both inter-and intra-aggregate pores varied significantly with SAP content,lime content,water content and curing time.Two main changes in fabric due to SAP are identified as:(1)an increase in intra-aggregate pores(<0.2 mm)due to the closer soilecementelime cluster space at higher SAP content;and(2)a decrease in inter-aggregate pores represented by a reduction in small-pores(0.2e2 mm)due to the lower pore volume of soil mixture after water absorption by SAP,and a slight increase in large-pores(>2 mm)due to the shrinkage of SAP particle during the freezeedry process of MIP test.Accordingly,the strength gain due to SAP for cementelime stabilized soil was mainly due to a denser fabric with less interaggregate pores.The cementitious products gradually developed over time,leading to an increase in intra-aggregate pores with an increasing proportion of micro-pores(0.006e0.2 mm).Meanwhile,the inter-aggregate pores were filled by cementitious products,resulting in a decrease in total void ratio.Hence,the strength development over time is attributable to the enhancement of cementation bonding and the refinement of fabric due to the increasing cementitious compounds. 展开更多
关键词 FABRIC Soil stabilization Microstructure Super-absorbent polymer(SAP)
下载PDF
Plasticity role in strength behavior of cement-phosphogypsum stabilized soils 被引量:4
3
作者 Xia Bian lingling zeng +2 位作者 Feng Ji Ming Xie Zhenshun Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1977-1988,共12页
Dredged soil and phosphogypsum are frequently regarded as wasted materials,which require further treatment to control their environmental impact.Hence,phosphogypsum is proposed as a binder to stabilize dredged soil,ai... Dredged soil and phosphogypsum are frequently regarded as wasted materials,which require further treatment to control their environmental impact.Hence,phosphogypsum is proposed as a binder to stabilize dredged soil,aiming at efficiently reducing and reusing these waste materials.In this study,the engineering properties of cement-phosphogypsum stabilized dredged soils were investigated through a series of unconfined compression tests,and the effects of plasticity index of original soils on the strength improvement were identified.Then,the microstructure test and mineralogical test were performed to understand the mechanism of physical role of original soils in strength improvement.The results revealed that the unconfined compressive strength significantly decreased with the increase in plasticity index at the same binder content.The essential factor for strength improvement was found to be the formation of cementitious materials identified as calcium silicate hydrate(CSH),calcium aluminate hydrate(CAH),and ettringite(Aft).The normalized integrated intensity of cementitious materials(CSH+CAH+Aft)by pore volume decreased with the increase in plasticity index.Consequently,the density of cementitious materials filling the soil pores controlled the effectiveness of strength improvement.More cementitious materials per pore volume were observed for the original soils with lower values of plasticity index.That is,the higher strength of stabilized soils with lower values of plasticity index was attributed to a packed structure forming by integrated fabric through denser cementitious components.It can be anticipated from the above findings that the effectiveness of stabilization treatment will significantly reduce with the increase in plasticity of origin soil. 展开更多
关键词 STRENGTH STABILIZATION Plasticity index MICROSTRUCTURE Mineralogical analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部