Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of...Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of phosphogypsum on the physicomechnical properties of stabilized soil subjected to wettingedrying cycles is not well understood to date.In this study,the effect of phosphogypsum on the durability of stabilized soil was studied by conducting a series of laboratory experiments,illustrating the changes in mass loss,pH value and unconfined compressive strength(qu)with wettingdrying cycles.The test results showed that the presence of phosphogypsum significantly restrained the mass loss in the early stage(lower than the 4th cycle),which in turn led to a higher qu of stabilized soil than that without phosphogypsum.After the 4th cycle,a sudden increase in mass loss was observed for stabilized soil with phosphogypsum,resulting in a significant drop in qu to a value lower than those without phosphogypsum at the 6th cycle.In addition,the qu of stabilized soils correlated well with the measured soil pH irrespective of phosphogypsum content for all wettingedrying tests.According to the microstructure observation via scanning electron microscope(SEM)and X-ray diffraction(XRD)tests,the mechanisms relating the sudden loss of qu for the stabilized soils with phosphogypsum after the 4th wetting-drying cycle are summarized as follows:(i)the disappearance of ettringite weakening the cementation bonding effect,(ii)the generation of a larger extent of microcrack,and(iii)a lower pH value,in comparison with the stabilized soil without phosphogypsum.展开更多
This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized s...This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized soil were analyzed with respect to the variation of SAP content,water content,lime content and curing time,using mercury intrusion porosimetry(MIP)tests.It can be observed that the delimitation pore diameter between inter-and intra-aggregate pores was 0.2 mm for the studied soil,determined through the intrusion/extrusion cycles.Experimental results showed that fabric in both inter-and intra-aggregate pores varied significantly with SAP content,lime content,water content and curing time.Two main changes in fabric due to SAP are identified as:(1)an increase in intra-aggregate pores(<0.2 mm)due to the closer soilecementelime cluster space at higher SAP content;and(2)a decrease in inter-aggregate pores represented by a reduction in small-pores(0.2e2 mm)due to the lower pore volume of soil mixture after water absorption by SAP,and a slight increase in large-pores(>2 mm)due to the shrinkage of SAP particle during the freezeedry process of MIP test.Accordingly,the strength gain due to SAP for cementelime stabilized soil was mainly due to a denser fabric with less interaggregate pores.The cementitious products gradually developed over time,leading to an increase in intra-aggregate pores with an increasing proportion of micro-pores(0.006e0.2 mm).Meanwhile,the inter-aggregate pores were filled by cementitious products,resulting in a decrease in total void ratio.Hence,the strength development over time is attributable to the enhancement of cementation bonding and the refinement of fabric due to the increasing cementitious compounds.展开更多
Dredged soil and phosphogypsum are frequently regarded as wasted materials,which require further treatment to control their environmental impact.Hence,phosphogypsum is proposed as a binder to stabilize dredged soil,ai...Dredged soil and phosphogypsum are frequently regarded as wasted materials,which require further treatment to control their environmental impact.Hence,phosphogypsum is proposed as a binder to stabilize dredged soil,aiming at efficiently reducing and reusing these waste materials.In this study,the engineering properties of cement-phosphogypsum stabilized dredged soils were investigated through a series of unconfined compression tests,and the effects of plasticity index of original soils on the strength improvement were identified.Then,the microstructure test and mineralogical test were performed to understand the mechanism of physical role of original soils in strength improvement.The results revealed that the unconfined compressive strength significantly decreased with the increase in plasticity index at the same binder content.The essential factor for strength improvement was found to be the formation of cementitious materials identified as calcium silicate hydrate(CSH),calcium aluminate hydrate(CAH),and ettringite(Aft).The normalized integrated intensity of cementitious materials(CSH+CAH+Aft)by pore volume decreased with the increase in plasticity index.Consequently,the density of cementitious materials filling the soil pores controlled the effectiveness of strength improvement.More cementitious materials per pore volume were observed for the original soils with lower values of plasticity index.That is,the higher strength of stabilized soils with lower values of plasticity index was attributed to a packed structure forming by integrated fabric through denser cementitious components.It can be anticipated from the above findings that the effectiveness of stabilization treatment will significantly reduce with the increase in plasticity of origin soil.展开更多
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52178328 and 52178361)the Fundamental Research Funds for the Open-end Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering(Grant No.SKLGDUEK2114).
文摘Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of phosphogypsum on the physicomechnical properties of stabilized soil subjected to wettingedrying cycles is not well understood to date.In this study,the effect of phosphogypsum on the durability of stabilized soil was studied by conducting a series of laboratory experiments,illustrating the changes in mass loss,pH value and unconfined compressive strength(qu)with wettingdrying cycles.The test results showed that the presence of phosphogypsum significantly restrained the mass loss in the early stage(lower than the 4th cycle),which in turn led to a higher qu of stabilized soil than that without phosphogypsum.After the 4th cycle,a sudden increase in mass loss was observed for stabilized soil with phosphogypsum,resulting in a significant drop in qu to a value lower than those without phosphogypsum at the 6th cycle.In addition,the qu of stabilized soils correlated well with the measured soil pH irrespective of phosphogypsum content for all wettingedrying tests.According to the microstructure observation via scanning electron microscope(SEM)and X-ray diffraction(XRD)tests,the mechanisms relating the sudden loss of qu for the stabilized soils with phosphogypsum after the 4th wetting-drying cycle are summarized as follows:(i)the disappearance of ettringite weakening the cementation bonding effect,(ii)the generation of a larger extent of microcrack,and(iii)a lower pH value,in comparison with the stabilized soil without phosphogypsum.
基金the China Postdoctoral Science Foundation(Grant Nos.2016M600396 and 2017T100355)the Fundamental Research Funds for the Central Universities of China(Grant No.B200204001)Jiangsu Natural Resources Science and Technology Fund(Grant No.KJXM2019025)are also acknowledged.
文摘This paper studies the microstructure variation induced by super-absorbent polymer(SAP)to understand the mechanism of macroscopic strength improvement of stabilized soil.The fabric changes of cement elime stabilized soil were analyzed with respect to the variation of SAP content,water content,lime content and curing time,using mercury intrusion porosimetry(MIP)tests.It can be observed that the delimitation pore diameter between inter-and intra-aggregate pores was 0.2 mm for the studied soil,determined through the intrusion/extrusion cycles.Experimental results showed that fabric in both inter-and intra-aggregate pores varied significantly with SAP content,lime content,water content and curing time.Two main changes in fabric due to SAP are identified as:(1)an increase in intra-aggregate pores(<0.2 mm)due to the closer soilecementelime cluster space at higher SAP content;and(2)a decrease in inter-aggregate pores represented by a reduction in small-pores(0.2e2 mm)due to the lower pore volume of soil mixture after water absorption by SAP,and a slight increase in large-pores(>2 mm)due to the shrinkage of SAP particle during the freezeedry process of MIP test.Accordingly,the strength gain due to SAP for cementelime stabilized soil was mainly due to a denser fabric with less interaggregate pores.The cementitious products gradually developed over time,leading to an increase in intra-aggregate pores with an increasing proportion of micro-pores(0.006e0.2 mm).Meanwhile,the inter-aggregate pores were filled by cementitious products,resulting in a decrease in total void ratio.Hence,the strength development over time is attributable to the enhancement of cementation bonding and the refinement of fabric due to the increasing cementitious compounds.
基金supported by the National Natural Science Foundation of China(Grant Nos.52178328 and 52178361)Partial financial support from the Open-end Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering(Grant No.SKLGDUEK2114)。
文摘Dredged soil and phosphogypsum are frequently regarded as wasted materials,which require further treatment to control their environmental impact.Hence,phosphogypsum is proposed as a binder to stabilize dredged soil,aiming at efficiently reducing and reusing these waste materials.In this study,the engineering properties of cement-phosphogypsum stabilized dredged soils were investigated through a series of unconfined compression tests,and the effects of plasticity index of original soils on the strength improvement were identified.Then,the microstructure test and mineralogical test were performed to understand the mechanism of physical role of original soils in strength improvement.The results revealed that the unconfined compressive strength significantly decreased with the increase in plasticity index at the same binder content.The essential factor for strength improvement was found to be the formation of cementitious materials identified as calcium silicate hydrate(CSH),calcium aluminate hydrate(CAH),and ettringite(Aft).The normalized integrated intensity of cementitious materials(CSH+CAH+Aft)by pore volume decreased with the increase in plasticity index.Consequently,the density of cementitious materials filling the soil pores controlled the effectiveness of strength improvement.More cementitious materials per pore volume were observed for the original soils with lower values of plasticity index.That is,the higher strength of stabilized soils with lower values of plasticity index was attributed to a packed structure forming by integrated fabric through denser cementitious components.It can be anticipated from the above findings that the effectiveness of stabilization treatment will significantly reduce with the increase in plasticity of origin soil.