Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of L...Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of Li_(2)S.To address these issues,a novel composite,using electrospinning technology,consisting of Fe_(3)Se_(4)and porous nitrogen-doped carbon nanofibers was designed for the interlayer of LSBs.The porous carbon nanofiber structure facilitates the transport of ions and electrons,while the Fe_(3)Se_(4)material adsorbs lithium polysulfides(LiPSs)and accelerates its catalytic conversion process.Furthermore,the Fe_(3)Se_(4)material interacts with soluble LiPSs to generate a new polysulfide intermediate,Li_(x)FeS_(y)complex,which changes the electrochemical reaction pathway and facilitates the three-dimensional deposition of Li_(2)S,enhancing the reversibility of LSBs.The designed LSB demonstrates a high specific capacity of1529.6 mA h g^(-1)in the first cycle at 0.2 C.The rate performance is also excellent,maintaining an ultra-high specific capacity of 779.7 mA h g^(-1)at a high rate of 8 C.This investigation explores the mechanism of the interaction between the interlayer and LiPSs,and provides a new strategy to regulate the reaction kinetics and Li_(2)S deposition in LSBs.展开更多
Large volumetric expansion of cathode hosts and sluggish transport kinetics in the cathode–electrolyte interface,as well as dendrite growth and hydrogen evolution at Zn anode side are considered as the system problem...Large volumetric expansion of cathode hosts and sluggish transport kinetics in the cathode–electrolyte interface,as well as dendrite growth and hydrogen evolution at Zn anode side are considered as the system problems that cause the electrochemical failure of aqueous Zn-vanadium oxide battery.In this work,a multifunctional anti-proton electrolyte was proposed to synchronously solve all those issues.Theoretical and experimental studies confirm that PEG 400 additive can regulate the Zn^(2+) solvation structure and inhibit the ionization of free water molecules of the electrolyte.Then,smaller lattice expansion of vanadium oxide hosts and less associated by-product formation can be realized by using such electrolyte.Besides,such electrolyte is also beneficial to guide the uniform Zn deposition and suppress the side reaction of hydrogen evolution.Owing to the integrated synergetic modifica-tion,a high-rate and ultrastable aqueous Zn-V_(2)O_(3)/C battery can be constructed,which can remain a specific capacity of 222.8 m Ah g^(-1)after 6000 cycles at 5 A g^(-1),and 121.8 m Ah g^(-1) even after 18,000 cycles at 20 A g^(-1),respectively.Such“all-in-one”solution based on the electrolyte design provides a new strategy for developing high-performance aqueous Zn-ion battery.展开更多
MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are...MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated.The batteries measured in the 1 M ZnSO4^-1 M MgSO4 electrolyte outplay other competitors,which deliver a high specific capacity of 374 mAh g^-1 at a current density of 100 mA g^-1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g^-1 at 5 A g^-1.This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.展开更多
Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully...Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully applied as enhanced anodes for lithium-ion batteries(LIBs).The CuO-Co_(3)O_(4)-RGO sandwiched nanostructures exhibit a reversible capacity of~847 mA·h·g^(-1)after 200 cycles’cycling at 100 mA·g^(-1)with a capacity retention of 79%.The CuO-Co_(3)O_(4)-RGO compounds show superior electrochemical properties than the comparative CuO-Co_(3)O_(4),Co_(3)O_(4)and CuO anodes,which may be ascribed to the following reasons:the hybridizing multicomponent can probably give the complementary advantages;the mutual benefit of uniformly distributing nanospheres across the layered RGO nanosheets can avoid the agglomeration of both the RGO nanosheets and the CuO-Co_(3)O_(4) nanospheres;the 3D storage structure as well as the graphene wrapped composite could enhance the electrical conductivity and reduce volume expansion effect associated with the discharge-charge process.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22372103)Guangdong Basic and Applied Basic Research Foundation,China(2021A1515010241,2024A1515010032)the Shenzhen Science and Technology Foundation,China(JCYJ20220531103216037)。
文摘Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of Li_(2)S.To address these issues,a novel composite,using electrospinning technology,consisting of Fe_(3)Se_(4)and porous nitrogen-doped carbon nanofibers was designed for the interlayer of LSBs.The porous carbon nanofiber structure facilitates the transport of ions and electrons,while the Fe_(3)Se_(4)material adsorbs lithium polysulfides(LiPSs)and accelerates its catalytic conversion process.Furthermore,the Fe_(3)Se_(4)material interacts with soluble LiPSs to generate a new polysulfide intermediate,Li_(x)FeS_(y)complex,which changes the electrochemical reaction pathway and facilitates the three-dimensional deposition of Li_(2)S,enhancing the reversibility of LSBs.The designed LSB demonstrates a high specific capacity of1529.6 mA h g^(-1)in the first cycle at 0.2 C.The rate performance is also excellent,maintaining an ultra-high specific capacity of 779.7 mA h g^(-1)at a high rate of 8 C.This investigation explores the mechanism of the interaction between the interlayer and LiPSs,and provides a new strategy to regulate the reaction kinetics and Li_(2)S deposition in LSBs.
基金financially supported by the National Natural Science Foundation of China(Nos.22178221,51774203)Shenzhen Science and Technology Program(Nos.JCYJ20200109105805902,JCYJ20200109105801725)+1 种基金Natural Science Foundation of Guangdong Province(Nos.2021A1515110751)China Postdoctoral Science Foundation(Nos.2021M702255)。
文摘Large volumetric expansion of cathode hosts and sluggish transport kinetics in the cathode–electrolyte interface,as well as dendrite growth and hydrogen evolution at Zn anode side are considered as the system problems that cause the electrochemical failure of aqueous Zn-vanadium oxide battery.In this work,a multifunctional anti-proton electrolyte was proposed to synchronously solve all those issues.Theoretical and experimental studies confirm that PEG 400 additive can regulate the Zn^(2+) solvation structure and inhibit the ionization of free water molecules of the electrolyte.Then,smaller lattice expansion of vanadium oxide hosts and less associated by-product formation can be realized by using such electrolyte.Besides,such electrolyte is also beneficial to guide the uniform Zn deposition and suppress the side reaction of hydrogen evolution.Owing to the integrated synergetic modifica-tion,a high-rate and ultrastable aqueous Zn-V_(2)O_(3)/C battery can be constructed,which can remain a specific capacity of 222.8 m Ah g^(-1)after 6000 cycles at 5 A g^(-1),and 121.8 m Ah g^(-1) even after 18,000 cycles at 20 A g^(-1),respectively.Such“all-in-one”solution based on the electrolyte design provides a new strategy for developing high-performance aqueous Zn-ion battery.
基金the National Natural Science Foundation of China(Grant Nos.51602200,61874074)Science and Technology Project of Shenzhen(JCYJ20170817101100705)the(Key)Project of Department of Education of Guangdong Province(Grant No.2016KZDXM008).Y.Z.thanks the support from Science and Technology Project of Shenzhen(ZDSYS201707271014468).L.S.thanks the support from Shenzhen Science and Technology Project Program(JCYJ20170817094552356).
文摘MgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc.Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated.The batteries measured in the 1 M ZnSO4^-1 M MgSO4 electrolyte outplay other competitors,which deliver a high specific capacity of 374 mAh g^-1 at a current density of 100 mA g^-1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g^-1 at 5 A g^-1.This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.
基金financially supported by the National Natural Science Foundation of China (21471100, 22005199)the Shenzhen Natural Science Fundation (20200813081943001)the Natural Science Foundation of Guangdong Province,China(2021A1515010241, 2021A1515010142)
文摘Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully applied as enhanced anodes for lithium-ion batteries(LIBs).The CuO-Co_(3)O_(4)-RGO sandwiched nanostructures exhibit a reversible capacity of~847 mA·h·g^(-1)after 200 cycles’cycling at 100 mA·g^(-1)with a capacity retention of 79%.The CuO-Co_(3)O_(4)-RGO compounds show superior electrochemical properties than the comparative CuO-Co_(3)O_(4),Co_(3)O_(4)and CuO anodes,which may be ascribed to the following reasons:the hybridizing multicomponent can probably give the complementary advantages;the mutual benefit of uniformly distributing nanospheres across the layered RGO nanosheets can avoid the agglomeration of both the RGO nanosheets and the CuO-Co_(3)O_(4) nanospheres;the 3D storage structure as well as the graphene wrapped composite could enhance the electrical conductivity and reduce volume expansion effect associated with the discharge-charge process.