期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
B-COPNA resin formation from ethylene tar light fractions:Process development and mechanical exploration by molecular simulation
1
作者 Hongyan Shen lingrui cui +4 位作者 Xingguo Wei Yuanqin Zhang Lian Cen Jun Xu Fahai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期118-129,共12页
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar... An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry. 展开更多
关键词 Ethylene tar CROSSLINKING COPNA resin Molecular simulation Transient state
下载PDF
Modification of FCC slurry oil and deoiled asphalt for making high-grade paving asphalt
2
作者 lingrui cui Jun Xu +3 位作者 Mannian Ren Tao Li Dianhua Liu Fahai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期300-309,共10页
With the rapid development of modern industry,high-grade paving asphalt is massively required to meet the demands for modern transportation.As one of additives,natural asphalt is indispensable since it can improve the... With the rapid development of modern industry,high-grade paving asphalt is massively required to meet the demands for modern transportation.As one of additives,natural asphalt is indispensable since it can improve the performance of paving asphalt in all aspects.However,the application of non-renewable natural asphalt is increasingly restricted by its limited reserves.It is imperative to find alternative approaches to produce high-grade paving asphalt.Fluid catalytic cracking(FCC)slurry oil is an ideal soft component for producing paving asphalt due to its high content of aromatics and resins.However,its bad ageing resistance limits its application to only low-grade paving asphalt.In the present work,a novel approach for producing high-grade paving asphalt was investigated using chemically modified FCC slurry oil and deoiled asphalt(DOA).The FT-IR and NMR results showed that dehydrogenation and condensation reaction occurred during the ageing process.From a series of aliphatic alcohols and aldehydes,propanal was selected as a proper modifier to improve the ageing resistance of FCC slurry oil.The propanalmodified slurry oil possessed more substituted aromatic units and less aromatic hydrogen atoms than other modified slurry oils,thus showing better ageing resistance.With the increase of length of aliphatic chains in modifier,the modified slurry oil contained more and longer alkyl substituent group on aromatics.Compared with the cross-linked oil(slurry oil modified by cross-linking agent),modified slurry oil possessed similar ageing resistance but higher flowing ability.Also,the effect of operation conditions on the kinematic viscosity of modified slurry oil were investigated.Blended with modified slurry oil,the penetration ratio of asphalt product increased from 53.7 to 66.2,which met the standard of 70#paving asphalt.Both the microscopic observations and FT-IR results indicated that modification process effectively reduced the oxidation degree of asphalt product,thus increasing the ageing resistance.Consequently,with aid of this process,high-grade paving asphalt was readily produced from low value oil from downstream products of refinery,instead of the depleting natural asphalt. 展开更多
关键词 Paving asphalt FCC slurry oil Ageing resistance Fuel PETROLEUM Chemical reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部