To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new meth...As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases.展开更多
Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditi...Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditional convolutional neural network(CNN)structure can only accept limited local context information.And most of the current methods only focus on the classification of benign and malignant brain tumors,multi classification of brain tumors is not common.In response to these shortcomings,considering that convolution kernels of different sizes can extract more comprehensive features,we put forward the multi-size convolutional kernel module.And considering that the combination of average-pooling with max-pooling can realize the complementary of the high-dimensional information extracted by the two structures,we proposed the dual-channel pooling layer.Combining the two structures with ResNet50,we proposed an improved ResNet50 CNN for the applications in multi-category brain tumor classification.We used data enhancement before training to avoid model over fitting and used five-fold cross-validation in experiments.Finally,the experimental results show that the network proposed in this paper can effectively classify healthy brain,meningioma,diffuse astrocytoma,anaplastic oligodendroglioma and glioblastoma.展开更多
In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter re...In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set.展开更多
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61572261)+4 种基金the Natural Science Foundation of Anhui(1908085MF207 and 1908085QE217)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097)the Postdoctoral Foundation of Jiangsu(2018K009B)the Higher Education Quality Project of Anhui(2019sjjd81,2018mooc059,2018kfk009,2018sxzx38 and 2018FXJT02)the Fuyang Normal University Doctoral Startup Foundation and Fuyang Government Research Foundation(2017KYQD0008 and XDHXTD201703).
文摘As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases.
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61873131)+5 种基金the Natural Science Foundation of Anhui(1908085MF207 and 1908085QE217)the Key Research Project of Anhui Natural Science(KJ2020A1215 and KJ2020A1216)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097)the Postdoctoral Foundation of Jiangsu(2018K009B)the Higher Education Quality Project of Anhui(2019sjjd81,2018mooc059,2018kfk009,2018sxzx38 and 2018FXJT02)the Fuyang Normal University Doctoral Startup Foundation(2017KYQD0008).
文摘Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditional convolutional neural network(CNN)structure can only accept limited local context information.And most of the current methods only focus on the classification of benign and malignant brain tumors,multi classification of brain tumors is not common.In response to these shortcomings,considering that convolution kernels of different sizes can extract more comprehensive features,we put forward the multi-size convolutional kernel module.And considering that the combination of average-pooling with max-pooling can realize the complementary of the high-dimensional information extracted by the two structures,we proposed the dual-channel pooling layer.Combining the two structures with ResNet50,we proposed an improved ResNet50 CNN for the applications in multi-category brain tumor classification.We used data enhancement before training to avoid model over fitting and used five-fold cross-validation in experiments.Finally,the experimental results show that the network proposed in this paper can effectively classify healthy brain,meningioma,diffuse astrocytoma,anaplastic oligodendroglioma and glioblastoma.
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61572261 and 61876089)+3 种基金the Natural Science Foundation of Anhui(1908085MF207,KJ2020A1215,KJ2021A1251 and KJ2021A1253)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097 and gxyqZD2021142)the Postdoctoral Foundation of Jiangsu(2018K009B)the Foundation of Fuyang Normal University(TDJC2021008).
文摘In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set.