For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic...For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.展开更多
Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabiliza...Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabilization of these volatile ingredients using encapsulation is a commonly investigated practice.Complexation of aroma compounds using starch inclusion complex could be a potential approach due to the hydrophobicity of the left-handed single helical structure.In the present study,we used starch of three different V-type structures,namely V,V,and V,to encapsulate six different aroma compounds,including1-decanol(DN),cis-3-hexen-1-ol(HN),4-allylanisole(AN),γ-decalactone(DA),trans-cinnamaldehyde(CA),and citral(CT).The formed inclusion complexes samples were characterized using complementary techniques,including X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The results showed that upon complexation with aroma compounds,all V-subtypes retained their original crystalline structures.However,different trends of crystallinity were observed for each type of the prepared inclusion complexes.Additionally,among three V-type starches,V-type starch formed inclusion complexes with aroma compounds most efficiently and promoted the formation of FormⅡcomplex.This study suggested that the structure of aroma compounds and the type of V starch could both affect the complexation properties.展开更多
Pecans have many health benefits and are known for being part of a heart-healthy diet.Nutrition education is a key component in increasing pecan consumption among young consumers.In an effort to improve the efficacy o...Pecans have many health benefits and are known for being part of a heart-healthy diet.Nutrition education is a key component in increasing pecan consumption among young consumers.In an effort to improve the efficacy of nutrition education targeting a younger demographic,this study aims to investigate how the information quality of a nutrition education program affects consumers'nutrition knowledge,trust,and intentions to recommend and try pecans.A total of 271 usable questionnaires were collected from college students at a southeast university.Our findings indicate that information quality could directly influence consumer knowledge and trust in an information source and indirectly influences consumers'willingness to recommend or try a product.This study also showed that improved consumer knowledge and trust in an information source could strongly affect their willingness to recommend pecan products.The findings of this study can be used to increase the efficacy of educational marketing strategies in the pecan industry and drive an increase in consumption among younger populations.展开更多
Microgreens are young and tender vegetables or herbs that provide attractive color,flavor,and nutrition.The purpose of this study was to evaluate the nutritional and sensory qualities of broccoli microgreens grown by ...Microgreens are young and tender vegetables or herbs that provide attractive color,flavor,and nutrition.The purpose of this study was to evaluate the nutritional and sensory qualities of broccoli microgreens grown by different methods(hydroponically vs.soil grown)and from different sources(commercial vs.local farm).No significant difference in total phenolic concentration and antioxidant capacity was found in all broccoli microgreens,but a significantly higher chlorophyll concentration was found in farm microgreens than the commercial ones.Moreover,the soil-grown farm microgreens possessed a significantly higher vitamin C concentration than hydroponically-grown farm sample and commercial sample.Participants in the sensory study favored farm samples regardless of growing method,and their overall liking was significantly correlated with taste of the microgreens.In addition,six other microgreens from the local farm were analyzed for their nutritional quality.These conclusions suggested a potential for consumers to still benefit nutritionally by purchasing commercial microgreens at a lower cost;however,it may be worthwhile for consumers to purchase microgreens from local farms for a better sensory experience.展开更多
Electrospinning is a simple and versatile technique that uses electrostatic forces to create fbers in the nano o micro range from a variety of materials,both synthetic and natural Due to the high surface area to volum...Electrospinning is a simple and versatile technique that uses electrostatic forces to create fbers in the nano o micro range from a variety of materials,both synthetic and natural Due to the high surface area to volume ratio,high porosity,and desirable mechanic characteristics of electrospun fbers,they are of current interest for a wide variety of applications.Some of the most signifcant applications of these fbers being researched include tissue engineering.drug delivery,wound dressings,environmental and energy applications,and protective materials.Notably,electrospun fbers may be specially tailored to better ft their fnal application through the direct 1oading of materials during the spining process as well as by choosing the correct base material for the fber.For example,it is desirable to use a biocompatible and biodegradable material in fibers desired for applications in the biomedical field;this way the fbers are able to safely interact with the human body.This review will explore the applications,as previously listed,with a focus on how fbers are made using carbohydrate polymers(such as alginate,cellulose and its derivatives,chitosan and chitin,starch,pul1ulan,hyaluronic acid,dextran,and 1evan)as their base material,and their applicability and functionality in various applications.展开更多
Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this p...Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this paper, a finite element model of proximal femur was developed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis. Cementless stems made of titanium, two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone. The distributions of bone density, von Mises stress, and interface shear stress were obtained. All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur, but the degrees of stress shielding were different. The amount of bone loss caused by titanium implant was in agreement with the clinical obser- vation. The FGM stems caused less bone loss than that of the titanium stem, in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively, and the interface shear stresses were more evenly distributed in the model with FGM 1 stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems. The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view. The next steps are to fabricate FGM stern and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.展开更多
Microgreens are young,tender greens that are used to enhance the color,texture,or flavor of salads and main dishes.They can be grown in small scales and indoors,making them widely adopted by controlled environment agr...Microgreens are young,tender greens that are used to enhance the color,texture,or flavor of salads and main dishes.They can be grown in small scales and indoors,making them widely adopted by controlled environment agriculture,an indoor farming practice is particularly important for feeding increasing urban populations.Besides,microgreens are attracting more consumers’attention due to their high nutritional value and unique sensory characteristics.This review focuses on the nutrition quality,sensory evaluation,pre-and post-harvest interventions,and health benefits of microgreens.Microgreens are rich in vitamins(e.g.,VC),minerals(e.g.,copper and zinc),and phytochemicals,including carotenoids and phenolic compounds,which act as antioxidants in human body.Pre-harvest interventions,such as illumination,salinity stress,nutrient fortification,and natural substrates,infl uence the photosynthetic and metabolic activities of microgreens and were shown to improve their nutritional quality,while the effects varied among species.After harvesting,packaging method and storage temperature can infl uence the nutrient retention in microgreens.Both in vitro and in vivo studies have shown that microgreens have anti-infl ammatory,anti-cancer,anti-bacterial,and anti-hyperglycemia properties,making it a new functional food beneficial to human health.The sensory attributes and overall acceptability and liking of microgreens are primarily infl uenced by their phytochemical content.Microgreens are only getting popular during the last decades and research on microgreens is still at its early stage.More studies are warranted to optimize the pre-and post-harvest practices for nutrient enhancement and retention and to explore the potential health benefits of different microgreens for the prevention and treatment of chronic diseases.展开更多
基金Scientific Research Fund of Liaoning Provincial Education Department(No.JGLX2021030):Research on Vision-Based Intelligent Perception Technology for the Survival of Benthic Organisms.
文摘For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection.
基金funded by the USDA National Institute of Food and Agriculture,Agriculture and Food Research Initiative Program,Competitive Grants Program award from the Improving Food Quality(A1361)program FY 2018 as grant#2018-67017-27558。
文摘Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabilization of these volatile ingredients using encapsulation is a commonly investigated practice.Complexation of aroma compounds using starch inclusion complex could be a potential approach due to the hydrophobicity of the left-handed single helical structure.In the present study,we used starch of three different V-type structures,namely V,V,and V,to encapsulate six different aroma compounds,including1-decanol(DN),cis-3-hexen-1-ol(HN),4-allylanisole(AN),γ-decalactone(DA),trans-cinnamaldehyde(CA),and citral(CT).The formed inclusion complexes samples were characterized using complementary techniques,including X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The results showed that upon complexation with aroma compounds,all V-subtypes retained their original crystalline structures.However,different trends of crystallinity were observed for each type of the prepared inclusion complexes.Additionally,among three V-type starches,V-type starch formed inclusion complexes with aroma compounds most efficiently and promoted the formation of FormⅡcomplex.This study suggested that the structure of aroma compounds and the type of V starch could both affect the complexation properties.
基金This project is funded by the USDA Agricultural Marketing Service,Specialty Crop Block Grant Program,as USDA-AMS award#AM200100XXXXG028.
文摘Pecans have many health benefits and are known for being part of a heart-healthy diet.Nutrition education is a key component in increasing pecan consumption among young consumers.In an effort to improve the efficacy of nutrition education targeting a younger demographic,this study aims to investigate how the information quality of a nutrition education program affects consumers'nutrition knowledge,trust,and intentions to recommend and try pecans.A total of 271 usable questionnaires were collected from college students at a southeast university.Our findings indicate that information quality could directly influence consumer knowledge and trust in an information source and indirectly influences consumers'willingness to recommend or try a product.This study also showed that improved consumer knowledge and trust in an information source could strongly affect their willingness to recommend pecan products.The findings of this study can be used to increase the efficacy of educational marketing strategies in the pecan industry and drive an increase in consumption among younger populations.
文摘Microgreens are young and tender vegetables or herbs that provide attractive color,flavor,and nutrition.The purpose of this study was to evaluate the nutritional and sensory qualities of broccoli microgreens grown by different methods(hydroponically vs.soil grown)and from different sources(commercial vs.local farm).No significant difference in total phenolic concentration and antioxidant capacity was found in all broccoli microgreens,but a significantly higher chlorophyll concentration was found in farm microgreens than the commercial ones.Moreover,the soil-grown farm microgreens possessed a significantly higher vitamin C concentration than hydroponically-grown farm sample and commercial sample.Participants in the sensory study favored farm samples regardless of growing method,and their overall liking was significantly correlated with taste of the microgreens.In addition,six other microgreens from the local farm were analyzed for their nutritional quality.These conclusions suggested a potential for consumers to still benefit nutritionally by purchasing commercial microgreens at a lower cost;however,it may be worthwhile for consumers to purchase microgreens from local farms for a better sensory experience.
文摘Electrospinning is a simple and versatile technique that uses electrostatic forces to create fbers in the nano o micro range from a variety of materials,both synthetic and natural Due to the high surface area to volume ratio,high porosity,and desirable mechanic characteristics of electrospun fbers,they are of current interest for a wide variety of applications.Some of the most signifcant applications of these fbers being researched include tissue engineering.drug delivery,wound dressings,environmental and energy applications,and protective materials.Notably,electrospun fbers may be specially tailored to better ft their fnal application through the direct 1oading of materials during the spining process as well as by choosing the correct base material for the fber.For example,it is desirable to use a biocompatible and biodegradable material in fibers desired for applications in the biomedical field;this way the fbers are able to safely interact with the human body.This review will explore the applications,as previously listed,with a focus on how fbers are made using carbohydrate polymers(such as alginate,cellulose and its derivatives,chitosan and chitin,starch,pul1ulan,hyaluronic acid,dextran,and 1evan)as their base material,and their applicability and functionality in various applications.
基金This work is supported by the National Natural Science Foundation of China (Nos. 10832012 and 10972090), and the 973 Program (No. 2012CB821202).
文摘Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this paper, a finite element model of proximal femur was developed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis. Cementless stems made of titanium, two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone. The distributions of bone density, von Mises stress, and interface shear stress were obtained. All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur, but the degrees of stress shielding were different. The amount of bone loss caused by titanium implant was in agreement with the clinical obser- vation. The FGM stems caused less bone loss than that of the titanium stem, in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively, and the interface shear stresses were more evenly distributed in the model with FGM 1 stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems. The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view. The next steps are to fabricate FGM stern and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.
基金funded by the USDA Agricultural Marketing Service,Specialty Crop Block Grant Program,as USDA-AMS award#AM190100XXXXG055.
文摘Microgreens are young,tender greens that are used to enhance the color,texture,or flavor of salads and main dishes.They can be grown in small scales and indoors,making them widely adopted by controlled environment agriculture,an indoor farming practice is particularly important for feeding increasing urban populations.Besides,microgreens are attracting more consumers’attention due to their high nutritional value and unique sensory characteristics.This review focuses on the nutrition quality,sensory evaluation,pre-and post-harvest interventions,and health benefits of microgreens.Microgreens are rich in vitamins(e.g.,VC),minerals(e.g.,copper and zinc),and phytochemicals,including carotenoids and phenolic compounds,which act as antioxidants in human body.Pre-harvest interventions,such as illumination,salinity stress,nutrient fortification,and natural substrates,infl uence the photosynthetic and metabolic activities of microgreens and were shown to improve their nutritional quality,while the effects varied among species.After harvesting,packaging method and storage temperature can infl uence the nutrient retention in microgreens.Both in vitro and in vivo studies have shown that microgreens have anti-infl ammatory,anti-cancer,anti-bacterial,and anti-hyperglycemia properties,making it a new functional food beneficial to human health.The sensory attributes and overall acceptability and liking of microgreens are primarily infl uenced by their phytochemical content.Microgreens are only getting popular during the last decades and research on microgreens is still at its early stage.More studies are warranted to optimize the pre-and post-harvest practices for nutrient enhancement and retention and to explore the potential health benefits of different microgreens for the prevention and treatment of chronic diseases.