期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network 被引量:2
1
作者 Zhenkun Jin yixuan Geng +4 位作者 Chenlu Zhu Yunzhi Xia Xianjun Deng lingzhi yi Xianlan Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期498-508,共11页
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne... Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms. 展开更多
关键词 Energy harvesting WSN Deployment optimization Confident information coverage(CIC) Target perpetual coverage
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
2
作者 lingzhi yi Renzhe Duan +3 位作者 Wang Li yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model Competitive Multi-Objective Particle Swarm Optimization Algorithm (CMOPSO) Multi-Objective Optimization
下载PDF
Intelligent Building Load Scheduling Based on Multi-Objective Multi-Verse Algorithm
3
作者 Jiangyong Liu Jiankang Liu +3 位作者 Lv Fan lingzhi yi Huina Song Qingna Zeng 《Energy and Power Engineering》 2021年第4期19-29,共11页
<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorith... <div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div> 展开更多
关键词 Intelligent Building Load Scheduling Multi-Objective Optimization Multi-Objective Multi-Verse Algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部