Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these patholog...Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention.展开更多
This note describes a kind of ionic sieve with high selectivity to remove trace lead in water, in which stannic molybdopyrophosphate is used to be the substrate. The mechanism of selective separation on the surface of...This note describes a kind of ionic sieve with high selectivity to remove trace lead in water, in which stannic molybdopyrophosphate is used to be the substrate. The mechanism of selective separation on the surface of ionic sieve of removal of lead was explored by analyzing fourier transformation infrared spectra (FTIR), X-ray photoelectron spectrometry (XPS) and the results of selective adsorptivity experiment. The investigation suggests that in the process of synthesizing ionic sieve the olation reactions occur in solid phase by thermodynamic recrystallization and the adsorption units with special selectivity to lead are formed by chemical modification. After the ion exchange for Pb2+, the oaltion reactions not only keep the microstructures of adsorption units from collapse, but also provide lead cavties with special selectivity to lead ion that are capable of having special binding 'memory effect' to Pb2+ by SnO32- and P2O74- groups on the surface of this ionic sieve. Meanwhile, the selective展开更多
基金National Natural Science Foundation of China(Grant No.:82374317)State Key Program of National Natural Science of China(Grant Nos.:82130119 and 82130118)+4 种基金Postdoctoral Research Foundation of China(Grant No.:2021M690450)Traditional Chinese Medicine Research Project of Health Commission of Hubei Province(Grant No.:ZY2021M017)Hubei University of Chinese Medicine Funds for Distinguished Young Scholars(Grant No.:2022ZZXJ004)National Natural Science Foundation of China(Grant No.:82174210)Fundamental Research Funds for the Central Public Welfare Research Institutes(Grant No.:ZZ14-FL-005).
文摘Emerging research suggests a potential association of progression of Alzheimer's disease(AD)with alterations in synaptic currents and mitochondrial dynamics.However,the specific associations between these pathological changes remain unclear.In this study,we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models.The investigations included behavioural tests,brain magnetic resonance imaging(MRI),liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis,Nissl staining,thioflavin-S staining,enzyme-linked immunosorbent assay,Golgi-Cox staining,transmission electron microscopy(TEM),immunofluorescence staining,proteomics,adenosine triphosphate(ATP)detection,mitochondrial membrane potential(MMP)and reactive oxygen species(ROS)assessment,mitochondrial morphology analysis,electrophysiological studies,Western blotting,and molecular docking.The results revealed changes in synaptic currents,mitophagy,and mitochondrial dynamics in the AD models.Remarkably,intervention with Dengzhan Shengmai(DZSM)capsules emerged as a pivotal element in this investigation.Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention,which notably amplified the frequency and amplitude of synaptic transmission.The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions,including the hippocampal CA3,primary cingular cortex,prelimbic system,and dysgranular insular cortex.DZSM intervention led to increased IDE levels,augmented long-term potential(LTP)amplitude,and enhanced dendritic spine density and length.Moreover,DZSM intervention led to favourable changes in mitochondrial parameters,including ROS expression,MMP and ATP contents,and mitochondrial morphology.In conclusion,our findings delved into the realm of altered synaptic currents,mitophagy,and mitochondrial dynamics in AD,concurrently highlighting the therapeutic potential of DZSM intervention.
基金This work was supported by the National Advanced Materials Committee of China (Grant No. 863-715-004-220)the National Natural Science Foundation of China (Grant No. 29971022).
文摘This note describes a kind of ionic sieve with high selectivity to remove trace lead in water, in which stannic molybdopyrophosphate is used to be the substrate. The mechanism of selective separation on the surface of ionic sieve of removal of lead was explored by analyzing fourier transformation infrared spectra (FTIR), X-ray photoelectron spectrometry (XPS) and the results of selective adsorptivity experiment. The investigation suggests that in the process of synthesizing ionic sieve the olation reactions occur in solid phase by thermodynamic recrystallization and the adsorption units with special selectivity to lead are formed by chemical modification. After the ion exchange for Pb2+, the oaltion reactions not only keep the microstructures of adsorption units from collapse, but also provide lead cavties with special selectivity to lead ion that are capable of having special binding 'memory effect' to Pb2+ by SnO32- and P2O74- groups on the surface of this ionic sieve. Meanwhile, the selective