Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o...Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.展开更多
The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between C...The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between CO_(2)and epoxides at low temperature and pressure is still a challenge.Herein,a series of polypyrazoles with glass transition temperature(T_(g))in the range of 42.3-52.5℃ were synthesized and served as catalyst to mediate the cycloaddition of CO_(2)and epoxides by the assistant of tetrabutylammonium bromide.The catalytic behaviors of polypyrazole on the model cycloaddition of CO_(2)to epichlorohydrin,including the reaction parameters optimization and versatility were investigated in detail,and excellent yield(99.9%)and selectivity(99%)were obtained under the optimized reaction conditions of70℃ and 1.0 MPa for 6.0 h.Noteworthily,the polypyrazole acts as homogeneous catalyst during reaction(higher than T_(g)).And under room temperature,polypyrazoles can be easily separated and recovered,which is a promising feature of a heterogeneous catalyst.Furthermore,the reaction mechanism was proposed.The DFT calculation suggested that the formation of hydrogen bond between pyrazole and epoxide greatly reduced the energy barrier,which play an important role in promoting CO_(2)cycloaddition.展开更多
Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesio...In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesion,and low mechanical properties.Herein,a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property(308.47±29.20 kPa)and excellent hemostatic efficiency(96.5%±2.1%)was constructed as a hemostatic sealant.Typically,we combined chitosan(CS)with silk fibroin(SF)by cross-linking them through tannic acid(TA)to maintain the structural stability of the hydrogel,especially for wet tissue adhesion ability(shear adhesive strength=29.66±0.36 kPa).Compared with other materials reported previously,the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models,which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS.As a superior hemostatic sealant,the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.展开更多
The synthesis of cyclic polymer is an important topic in polymer chemistry. Herein, we report a one-step method to prepare cyclic polypyrazoles. Monomers with two functional groups, diazo and alkyne, were synthesized ...The synthesis of cyclic polymer is an important topic in polymer chemistry. Herein, we report a one-step method to prepare cyclic polypyrazoles. Monomers with two functional groups, diazo and alkyne, were synthesized and polymerized via 1,3-diploar cycloaddition in bulk under heating without any catalyst.Polypyrazoles with molecular weights in the range of 3800-4400 g/mol and yields in the range of 78.8-98.7% were successfully synthesized. No chain end group was detected by LC-QTOF-MS and FTIR, which proves the cyclic structure of polypyrazoles. What is noteworthy is that the cyclic polypyrazoles can selfassemble into vesicles during the reprecipitation process, which was proved by the results of SEM and TEM. The reason for that is the formation of intermolecular hydrogen bond between NH and ester groups.展开更多
基金support from the National Natural Science Foundation of China(22078130)the Fundamental Research Funds for the Central Universities(1042050205225990/010)Starting Research Fund of Qingyuan Innovation Laboratory(00523001).
文摘Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.
基金financially supported by the National Natural Science Foundation of China(21504025)the Natural Science Foundation of Fujian Province(2019J05040)+4 种基金Fujian Provincial Department of Education(JT180038)Key Program of Qingyuan Innovation Laboratory(00221003)Fuzhou University Testing Fund of precious apparatus(2021T022)Talent Program(GXRC18041)Higher Education Disciplinary Innovation Program(‘111’Program)of Fuzhou University。
文摘The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between CO_(2)and epoxides at low temperature and pressure is still a challenge.Herein,a series of polypyrazoles with glass transition temperature(T_(g))in the range of 42.3-52.5℃ were synthesized and served as catalyst to mediate the cycloaddition of CO_(2)and epoxides by the assistant of tetrabutylammonium bromide.The catalytic behaviors of polypyrazole on the model cycloaddition of CO_(2)to epichlorohydrin,including the reaction parameters optimization and versatility were investigated in detail,and excellent yield(99.9%)and selectivity(99%)were obtained under the optimized reaction conditions of70℃ and 1.0 MPa for 6.0 h.Noteworthily,the polypyrazole acts as homogeneous catalyst during reaction(higher than T_(g)).And under room temperature,polypyrazoles can be easily separated and recovered,which is a promising feature of a heterogeneous catalyst.Furthermore,the reaction mechanism was proposed.The DFT calculation suggested that the formation of hydrogen bond between pyrazole and epoxide greatly reduced the energy barrier,which play an important role in promoting CO_(2)cycloaddition.
基金This work was financially supported by the National Natural Science Foundation of China(22122507,21833010,61975207,22193042,and 21921001)the Natural Science Foundation of Fujian Province(2022J02012)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202069)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-SLH024)as well as Fujian Institute of Innovation(FJCXY18010201)in the Chinese Academy of Sciences.
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No 51903050)the Natural Science Foundation of Fujian Province(Grant No.2019J01258)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University,Grant No.sklpme2019-4-34)the Key Program of Qingyuan Innovation Laboratory(Grant No.00221002)the Fuzhou University Testing Fund of Precious Apparatus(Grant No.2021T025).
文摘In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesion,and low mechanical properties.Herein,a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property(308.47±29.20 kPa)and excellent hemostatic efficiency(96.5%±2.1%)was constructed as a hemostatic sealant.Typically,we combined chitosan(CS)with silk fibroin(SF)by cross-linking them through tannic acid(TA)to maintain the structural stability of the hydrogel,especially for wet tissue adhesion ability(shear adhesive strength=29.66±0.36 kPa).Compared with other materials reported previously,the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models,which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS.As a superior hemostatic sealant,the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.
基金financially supported by the National Natural Science Foundation of China (No.21504025)Natural Science Foundation of Fujian Province (No.2019J05040)+1 种基金Fujian Provincial Department of Education (No.JT180038)Talent program (No.GXRC18041) and ‘111’ program of Fuzhou University。
文摘The synthesis of cyclic polymer is an important topic in polymer chemistry. Herein, we report a one-step method to prepare cyclic polypyrazoles. Monomers with two functional groups, diazo and alkyne, were synthesized and polymerized via 1,3-diploar cycloaddition in bulk under heating without any catalyst.Polypyrazoles with molecular weights in the range of 3800-4400 g/mol and yields in the range of 78.8-98.7% were successfully synthesized. No chain end group was detected by LC-QTOF-MS and FTIR, which proves the cyclic structure of polypyrazoles. What is noteworthy is that the cyclic polypyrazoles can selfassemble into vesicles during the reprecipitation process, which was proved by the results of SEM and TEM. The reason for that is the formation of intermolecular hydrogen bond between NH and ester groups.