A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in s...A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in series for a centrifugal chiller in the paper. A finite-time thermodynamics method is used to set up the time series simulation model. As a result, an upper bound of recoverable condensation heat for the compound condensing process is obtained which is in good agreement with experimental result. And the result is valuable and useful to optimization design of condensing heat recovery.展开更多
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio...Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.展开更多
Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it ...Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it to achieve its theory.In this study,we design a new electrolyte,namely 1 M LiBF_(4)DMSO:DOL(1:9 vol.),achieving a high energy density in Li/CF_xprimary cells.The DMSO with a small molecular size and high donor number successfully solvates Li^(+)into a defined Li^(+)-solvation structure.Such solvated Li^(+)can intercalate into the large-spacing carbon layers and achieve an improved capacity.Consequently,when discharged to 1.0 V,the CF_(1.12)cathode demonstrates a specific capacity of 1944 m A h g^(-1)with a specific energy density of 3793 W h kg^(-1).This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CF_(x) cathode.展开更多
Inflammatory bowel diseases(IBD)significantly contribute to high mortality globally and negatively affect patients’qualifications of life.The gastrointestinal tract has unique anatomical characteristics and physiolog...Inflammatory bowel diseases(IBD)significantly contribute to high mortality globally and negatively affect patients’qualifications of life.The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations.Moreover,certain natural or synthetic anti-inflammatory drugs are associated with poor targeting,low drug accumulation at the lesion site,and other side effects,hindering them from exerting their therapeutic effects.Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment.This review mainly discusses the treatment status of IBD,obstacles to drug delivery,design strategies of colon-targeted delivery systems,and perspectives on the existing complementary therapies.Moreover,based on recent reports,we summarized the therapeutic mechanism of colon-targeted drug delivery.Finally,we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.展开更多
This article offers a thorough review of current early warning systems(EWS)and advocates for establishing a unified research network for EWS in infectious diseases between China and Australia.We propose that future re...This article offers a thorough review of current early warning systems(EWS)and advocates for establishing a unified research network for EWS in infectious diseases between China and Australia.We propose that future research should focus on improving infectious disease surveillance by integrating data from both countries to enhance predictive models and intervention strategies.The article highlights the need for standardized data formats and terminologies,improved surveillance capabilities,and the development of robust spatiotemporal predictive models.It concludes by examining the potential benefits and challenges of this collaborative approach and its implications for global infectious disease surveillance.This is particularly relevant to the ongoing project,early warning systems for Infectious Diseases between China and Australia(NetEWAC),which aims to use seasonal influenza as a case study to analyze influenza trends,peak activities,and potential interhemispheric transmission patterns.The project seeks to integrate data from both hemispheres to improve outbreak predictions and develop a spatiotemporal predictive modeling system for seasonal influenza transmission based on socio-environmental factors.展开更多
Objective:To discuss and analyze the causes of adverse reactions caused by the inactivated novel coronavirus vaccine(Vero cells),and to propose methods of prevention and care.Methods:A questionnaire was used to random...Objective:To discuss and analyze the causes of adverse reactions caused by the inactivated novel coronavirus vaccine(Vero cells),and to propose methods of prevention and care.Methods:A questionnaire was used to randomly select 229 adults who were vaccinated with the inactivated novel coronavirus vaccine(Vero cells)at Xi’an People’s Hospital(Xi’an Fourth Hospital).The adverse reactions were statistically analyzed.Results:Among the 229 adults vaccinated with the inactivated novel coronavirus vaccine(Vero cells),30 experienced vaccination reactions.The main reaction was local induration at the inoculation site,and dizziness was the primary systemic symptom.Conclusion:To reduce the incidence of adverse reactions to the inactivated novel coronavirus vaccine(Vero cells),it is necessary to effectively evaluate the health status of adults before vaccination,select the correct vaccination site,and strictly implement the rules of 3-inspections,7-checks,and 1-verification.Standardizing the operation process and providing thorough health education after vaccination can effectively reduce the occurrence of adverse reactions.展开更多
Introduction: Anti-Müllerian hormone (AMH) is shown to be a possible indicator of ovarian function. Severe systemic lupus erythematosus (SLE) patients exposed to high-dose cyclophosphamide (CTX) have a much highe...Introduction: Anti-Müllerian hormone (AMH) is shown to be a possible indicator of ovarian function. Severe systemic lupus erythematosus (SLE) patients exposed to high-dose cyclophosphamide (CTX) have a much higher risk of developing infertility and premature ovarian failure. Therefore, we performed a prospective case-control study to evaluate the impact of SLE on women’s ovarian reserve using AMH before CTX therapy. Methods: SLE patients before receiving CTX therapy were enrolled in our hospital. Age-matched healthy women were served as controls. Serum AMH level was measured using an enzyme-linked immunosorbent assay. Basal hormone levels were measured including follicle-stimulating hormone, luteinizing hormone, and estradiol on the third day of their menstrual periods. All participants underwent transvaginal ultrasonographic examination for the determination of total antral follicle count on the third day. Results: AMH value in SLE patients was significantly lower compared to healthy control with normal ovarian reserve. No significant difference in AMH levels was found between SLE and healthy control with low ovarian reserve. Conclusions: SLE patients not receiving CTX therapy even with normal menstruation, still had an impaired ovarian reserve. Therefore, early monitoring of AMH levels could better reflect the ovarian function and reproductive outcomes of SLE patients and relative protective strategy needed to reserve fertility.展开更多
The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local avera...The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local average gray level difference was proposed in this paper for the sea surface. Firstly, the method enhanced the details of the small targets by employing guided filtering to suppress the background clutter and noise in the sea surface image. Subsequently, the local average gray level difference of each point in the image was calculated to further distinguish the targets from other interference points. Finally, the threshold segmentation method was utilized to obtain the actual small targets on the sea surface. After conducting experiments on various sea surface scenes, the LSCRG, BSF, and ROC curve were computed for the proposed method and five other algorithms. Comparative analysis with BS, Top-hat, TDLMS, Max-median, and LCM demonstrates the superiority of the proposed method for infrared small target detection on the sea surface.展开更多
Programmed cell death 1(PD-1)/programmed cell death 1 ligand(PD-L1) blockade has shown promising effects in cancer immunotherapy. Removing the so-called "brakes" on T cell immune responses by blocking the PD-1/P...Programmed cell death 1(PD-1)/programmed cell death 1 ligand(PD-L1) blockade has shown promising effects in cancer immunotherapy. Removing the so-called "brakes" on T cell immune responses by blocking the PD-1/PDL1 check point should boost anti-tumor immunity and provide durable tumor regression for cancer patients.However, 30%–60% of patients show no response to PD-1/PD-L1 blockade. Thus, it is urgent to explore the underlying resistance mechanisms to improve sensitivity to anti-PD-1/PD-L1 therapy. We propose that the mechanisms promoting resistance mainly include T cell exclusion or exhaustion at the tumor site,immunosuppressive factors in the tumor microenvironment(TME), and a range of tumor-intrinsic factors. This review highlights the power of studying the cellular and molecular mechanisms of resistance to improve the rational design of combination therapeutic strategies that can be translated to the clinic. Here, we briefly discuss the development of PD-1/PD-L1 blockade agents and focus on the current issues and future prospects for potential combinatorial therapeutic strategies that include anti-PD-1/PD-L1 therapy, based upon the available preclinical and clinical data.展开更多
In the monocot rice species Oryza sativa L., one of the most striking morphological processes during reproductive development is the concurrence of panicle development with the sequential elongation of upper internod...In the monocot rice species Oryza sativa L., one of the most striking morphological processes during reproductive development is the concurrence of panicle development with the sequential elongation of upper internodes (UPIs). To elucidate the underlying molecular mechanisms, we cloned the rice gene NECK LEAF 1 (NL1), which when mutated results in delays in flowering time, smaller panicles with overgrown bracts and abnormal UPI elongation patterns. The NL1 gene encodes a GATA-type transcription factor with a single zinc finger domain, and its transcripts are de- tected predominantly in the bract primordia, which normally degenerate in the wild-type plants. Overexpression of NL1 in transgenic plants often gives rise to severe growth retardation, less vegetative phytomers and smaller leaves, suggesting that NL1 plays an important role in organ differentiation. A novel mutant allele of PLASTOCHRON1 (PLAD, a gene known to play a key role in regulating leaf initiation, was identified in this study. Genetic analysis demonstrated an interaction between nil and plal, with NL1 acting upstream of PLA1. The expression level and spatial pattern of PLA1 were found to be altered in the nil mutant. Furthermore, the expression of two regulators of flowering, Hd3a and OsMADS1, was also affected in the nil mutant. On the basis of these findings, we propose that NL1 is an intrinsic factor that modulates and coordinates organogenesis through regulating the expression of PLA1 and other regulatory genes during reproductive development in rice.展开更多
Metal-free, heteroatom functionalized carbon-based catalysts have made remarkable progress in recent years in a wide range of applications related to energy storage and energy generation. In this study, high surface a...Metal-free, heteroatom functionalized carbon-based catalysts have made remarkable progress in recent years in a wide range of applications related to energy storage and energy generation. In this study, high surface area mesoporous ordered sulphur doped carbon materials are obtained via one-pot hydrothermal synthesis of carbon/SBA-15 composite after removal of in-situ synthesized hard template SiO2. 2-thiophenecarboxy acid as sulphur source gives rise to sulphur doping level of 5.5 wt%. Comparing with pristine carbon, the sulphur doped mesoporous ordered carbon demonstrates improved electro-catalytic activity in the oxygen reduction reaction in alkaline solution. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Objective:Esophageal squamous cell carcinoma(ESCC)has high morbidity and mortality rates worldwide.Cancer stem cells(CSCs)may cause tumor initiation,metastasis,and recurrence and are also responsible for chemotherapy ...Objective:Esophageal squamous cell carcinoma(ESCC)has high morbidity and mortality rates worldwide.Cancer stem cells(CSCs)may cause tumor initiation,metastasis,and recurrence and are also responsible for chemotherapy and radiotherapy failures.Myeloid-derived suppressor cells(MDSCs),in contrast,are known to be involved in mediating immunosuppression.Here,we aimed to investigate the mechanisms of interaction of CSCs and MDSCs in the tumor microenvironment.Methods:ESCC tissues and cell lines were evaluated.Neural precursor cell expressed,developmentally downregulated 9(NEDD9)was knocked down and overexpressed by lentiviral transfection.Quantitative PCR,Western blot,immunohistochemistry,cell invasion,flow cytometry,cell sorting,multiplex chemokine profiling,and tumor growth analyses were performed.Results:Microarray analysis revealed 10 upregulated genes in esophageal CSCs.Only NEDD9 was upregulated in CSCs using the sphere-forming method.NEDD9 expression was correlated with tumor invasion(P=0.0218),differentiation(P=0.0153),and poor prognosis(P=0.0373).Additionally,NEDD9 was required to maintain the stem-like phenotype.Screening of chemokine expression in ESCC cells with NEDD9 overexpression and knockdown showed that NEDD9 regulated C-X-C motif chemokine ligand 8(CXCL8)expression via the ERK pathway.CXCL8 mediated the recruitment of MDSCs induced by NEDD9 in vitro and in vivo.MDSCs promoted the stemness of ESCC cells through NEDD9 via the Notch pathway.Conclusions:As a marker of ESCC,NEDD9 maintained the stemness of ESCC cells and regulated CXCL8 through the ERK pathway to recruit MDSCs into the tumor,suggesting NEDD9 as a therapeutic target and novel prognostic marker for ESCC.展开更多
LiMn_(y)Fe_(1-y)PO_(4) is considered a promising cathode material for next-generation lithium-ion batteries(LIBs) due to its high energy density and low cost. Its energy density degradation is often ascribed to the ca...LiMn_(y)Fe_(1-y)PO_(4) is considered a promising cathode material for next-generation lithium-ion batteries(LIBs) due to its high energy density and low cost. Its energy density degradation is often ascribed to the capacity loss during cycling. However, in this study, we find that the energy density degradation mainly roots in voltage decay. We have synthesized a series of LiMn_(y)Fe_(1-y)PO_(4) /C(0.5 ≤ y ≤ 0.8) and find this voltage decay is correlated with the Mn content. A high amount Mn leads to a heavier voltage decay.In-situ X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) reveal the nature of this effect, which show a mismatch along the b-axis of-2.68%(charge) and +3.4%(discharge), a volume misfit of-4.41%(charge) and +4.54%(discharge) between Li_(x)Mn_(y)Fe_(1-y)PO_(4) and Mn_(y)Fe_(1-y)PO_(4) during phase transitions. The resultant misfit strains during Li+insertion compared to extraction result in structural degradations, such as amorphization and impurity(Mn F3) accumulation after cycling. The voltage decay can be alleviated by kinetic relaxations and recovered by a wild reannealing. This work demonstrates effective strategies to improve the energy density and cycling performance of LiMn_(y)Fe_(1-y)PO_(4) /C,providing good references for other LIB cathodes, such as the Li-rich cathodes.展开更多
Three-dimensional(3 D)frameworks have received much attention as an effective modification strategy for next-generation high-energy-density lithium metal batteries.However,the top-growth mode of lithium(Li)on the 3 D ...Three-dimensional(3 D)frameworks have received much attention as an effective modification strategy for next-generation high-energy-density lithium metal batteries.However,the top-growth mode of lithium(Li)on the 3 D framework remains a tough challenge.To achieve a uniform bottom-up Li growth,a scheme involving Ag concentration gradient in 3 D PVDF framework(C-Ag/PVDF)is proposed.Ag nanoparticles with a concentration gradient induce an interface activity gradient in the 3 D framework,and this gradient feature is still maintained during the cycle.As a result,the C-Ag/PVDF framework delivers a long lifespan over 1800 h at a current density of 1 mA cm^(-2) with a capacity of 1 mAh cm^(-2),and shows an ultra-long life(>1300 h)even at a high current density of 4 mA cm^(-2) with a capacity of 4 mAh cm^(-2).The advantage of concentration gradient provides further insights into the optimal design of the 3 D framework for stable Li metal anode.展开更多
Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.U...Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design.展开更多
The function of serrate(SE)in miRNA biogenesis in Arabidopsis is well elucidated,whereas its role in plant drought resistance is largely unknown.In this study,we report that MdSE acts as a negative regulator of apple(...The function of serrate(SE)in miRNA biogenesis in Arabidopsis is well elucidated,whereas its role in plant drought resistance is largely unknown.In this study,we report that MdSE acts as a negative regulator of apple(Malus×domestica)drought resistance by regulating the expression levels of MdMYB88 and MdMYB124 and miRNAs,including mdm-miR156,mdm-miR166,mdm-miR172,mdm-miR319,and mdm-miR399.MdSE interacts with MdMYB88 and MdMYB124,two positive regulators of apple drought resistance.MdSE decreases the transcript and protein levels of MdMYB88 and MdMYB124,which directly regulate the expression of MdNCED3,a key enzyme in abscisic acid(ABA)biosynthesis.Furthermore,MdSE is enriched in the same region of the MdNECD3 promoter where MdMYB88/MdMYB124 binds.Consistently,MdSE RNAi transgenic plants are more sensitive to ABA-induced stomatal closure,whereas MdSE OE plants are less sensitive.In addition,under drought stress,MdSE is responsible for the biogenesis of mdm-miR399,a negative regulator of drought resistance,and negatively regulates miRNAs,including mdm-miR156,mdm-miR166,mdm-miR172,and mdm-miR319,which are positive regulators of drought resistance.Taken together,by revealing the negative role of MdSE,our results broaden our understanding of the apple drought response and provide a candidate gene for apple drought improvement through molecular breeding.展开更多
Current lithium (Li) ion batteries consisting of graphite as the anode and intercalation materials (such as LiCoO2, LiNixCoyMn1-x-yO2, LiNi0.8Co0.1Al0.1O2) as the cathodes have almost reached their theoretical energy ...Current lithium (Li) ion batteries consisting of graphite as the anode and intercalation materials (such as LiCoO2, LiNixCoyMn1-x-yO2, LiNi0.8Co0.1Al0.1O2) as the cathodes have almost reached their theoretical energy density of 300 Wh/kg. As a result, exploring high energy density batteries is urgent. Li-metal taking place of the graphite as the anode has several advantages. On one hand, it has a low operational voltage (-3.04 V versus standard hydrogen electrode) and a high specific capacity of 3860 mAh/g offering the battery with high energy density. On the other hand, when the Li-metal as the anode, the cathodes can be extended to Li-free or Li-deficient materials, which means the cathodes have more choices. For instance, S, O2, conversion reaction-type materials can be optional. While, the introduction of Li-metal anodes brings in several challenges [1–3]. Firstly, Li-metal is highly electrochemical and electrochemical active to have undesirable reactions with conventional carbonate-based liquid electrolytes, leading a low Coulombic efficiency and large polarizations. Secondly, the formed Li dendrites due to uneven Li+ distribution during plating and stripping has the chances of percolating separators leading to short circuits. Thirdly, Li metal is a host-free material (~5 μm have a capacity of 1 mAh/cm2), thus it suffers from a huge volume change, which brings in difficulty in the cell design.展开更多
文摘A time series model is used in this paper to describe the progress of circulating direct condensation heat recovery of the compound condensing process (CCP) which is made of two water cooling condensing processes in series for a centrifugal chiller in the paper. A finite-time thermodynamics method is used to set up the time series simulation model. As a result, an upper bound of recoverable condensation heat for the compound condensing process is obtained which is in good agreement with experimental result. And the result is valuable and useful to optimization design of condensing heat recovery.
基金supported by the National Natural Science Foundation of China,Nos.81801236(to ZX),81974189(to HT)a grant from Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No.ynlc201719(to QZ).
文摘Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.
基金supported by the National Natural Science Foundation of China(Nos.52072061,22322903,12174162)the Natural Science Foundation of Sichuan,China(No.2023NSFSC1914)21C Innovation Laboratory,Contemporary Amperex Technology Ltd.by project No.21C-OP-202103。
文摘Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it to achieve its theory.In this study,we design a new electrolyte,namely 1 M LiBF_(4)DMSO:DOL(1:9 vol.),achieving a high energy density in Li/CF_xprimary cells.The DMSO with a small molecular size and high donor number successfully solvates Li^(+)into a defined Li^(+)-solvation structure.Such solvated Li^(+)can intercalate into the large-spacing carbon layers and achieve an improved capacity.Consequently,when discharged to 1.0 V,the CF_(1.12)cathode demonstrates a specific capacity of 1944 m A h g^(-1)with a specific energy density of 3793 W h kg^(-1).This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CF_(x) cathode.
基金supported by CACMS Innovation Fund(CI2021B016,CI2021A04801)National Natural Science Foundation of China(82192913,82174073)+2 种基金Qihuang Scholar ProgramCACMS Foundation(ZZ13-035-10)China Postdoctoral Science Foundation(2023M733913).
文摘Inflammatory bowel diseases(IBD)significantly contribute to high mortality globally and negatively affect patients’qualifications of life.The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations.Moreover,certain natural or synthetic anti-inflammatory drugs are associated with poor targeting,low drug accumulation at the lesion site,and other side effects,hindering them from exerting their therapeutic effects.Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment.This review mainly discusses the treatment status of IBD,obstacles to drug delivery,design strategies of colon-targeted delivery systems,and perspectives on the existing complementary therapies.Moreover,based on recent reports,we summarized the therapeutic mechanism of colon-targeted drug delivery.Finally,we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
基金Supported by the National Foundation for Australia-China Relations(Grant No.220011)the Australian Department of Foreign Affairs and Trade(DFAT)+1 种基金support from the Healthy Environments And Lives(HEAL)National Research Networkfunded by the National Health and Medical Research Council(NHMRC)through the Special Initiative in Human Health and Environmental Change(Grant No.2008937).
文摘This article offers a thorough review of current early warning systems(EWS)and advocates for establishing a unified research network for EWS in infectious diseases between China and Australia.We propose that future research should focus on improving infectious disease surveillance by integrating data from both countries to enhance predictive models and intervention strategies.The article highlights the need for standardized data formats and terminologies,improved surveillance capabilities,and the development of robust spatiotemporal predictive models.It concludes by examining the potential benefits and challenges of this collaborative approach and its implications for global infectious disease surveillance.This is particularly relevant to the ongoing project,early warning systems for Infectious Diseases between China and Australia(NetEWAC),which aims to use seasonal influenza as a case study to analyze influenza trends,peak activities,and potential interhemispheric transmission patterns.The project seeks to integrate data from both hemispheres to improve outbreak predictions and develop a spatiotemporal predictive modeling system for seasonal influenza transmission based on socio-environmental factors.
文摘Objective:To discuss and analyze the causes of adverse reactions caused by the inactivated novel coronavirus vaccine(Vero cells),and to propose methods of prevention and care.Methods:A questionnaire was used to randomly select 229 adults who were vaccinated with the inactivated novel coronavirus vaccine(Vero cells)at Xi’an People’s Hospital(Xi’an Fourth Hospital).The adverse reactions were statistically analyzed.Results:Among the 229 adults vaccinated with the inactivated novel coronavirus vaccine(Vero cells),30 experienced vaccination reactions.The main reaction was local induration at the inoculation site,and dizziness was the primary systemic symptom.Conclusion:To reduce the incidence of adverse reactions to the inactivated novel coronavirus vaccine(Vero cells),it is necessary to effectively evaluate the health status of adults before vaccination,select the correct vaccination site,and strictly implement the rules of 3-inspections,7-checks,and 1-verification.Standardizing the operation process and providing thorough health education after vaccination can effectively reduce the occurrence of adverse reactions.
文摘Introduction: Anti-Müllerian hormone (AMH) is shown to be a possible indicator of ovarian function. Severe systemic lupus erythematosus (SLE) patients exposed to high-dose cyclophosphamide (CTX) have a much higher risk of developing infertility and premature ovarian failure. Therefore, we performed a prospective case-control study to evaluate the impact of SLE on women’s ovarian reserve using AMH before CTX therapy. Methods: SLE patients before receiving CTX therapy were enrolled in our hospital. Age-matched healthy women were served as controls. Serum AMH level was measured using an enzyme-linked immunosorbent assay. Basal hormone levels were measured including follicle-stimulating hormone, luteinizing hormone, and estradiol on the third day of their menstrual periods. All participants underwent transvaginal ultrasonographic examination for the determination of total antral follicle count on the third day. Results: AMH value in SLE patients was significantly lower compared to healthy control with normal ovarian reserve. No significant difference in AMH levels was found between SLE and healthy control with low ovarian reserve. Conclusions: SLE patients not receiving CTX therapy even with normal menstruation, still had an impaired ovarian reserve. Therefore, early monitoring of AMH levels could better reflect the ovarian function and reproductive outcomes of SLE patients and relative protective strategy needed to reserve fertility.
文摘The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local average gray level difference was proposed in this paper for the sea surface. Firstly, the method enhanced the details of the small targets by employing guided filtering to suppress the background clutter and noise in the sea surface image. Subsequently, the local average gray level difference of each point in the image was calculated to further distinguish the targets from other interference points. Finally, the threshold segmentation method was utilized to obtain the actual small targets on the sea surface. After conducting experiments on various sea surface scenes, the LSCRG, BSF, and ROC curve were computed for the proposed method and five other algorithms. Comparative analysis with BS, Top-hat, TDLMS, Max-median, and LCM demonstrates the superiority of the proposed method for infrared small target detection on the sea surface.
基金supported by grants from the National Natural Science Foundation of China (No. 81171986)the Ministry of Public Health (No. 201501004)
文摘Programmed cell death 1(PD-1)/programmed cell death 1 ligand(PD-L1) blockade has shown promising effects in cancer immunotherapy. Removing the so-called "brakes" on T cell immune responses by blocking the PD-1/PDL1 check point should boost anti-tumor immunity and provide durable tumor regression for cancer patients.However, 30%–60% of patients show no response to PD-1/PD-L1 blockade. Thus, it is urgent to explore the underlying resistance mechanisms to improve sensitivity to anti-PD-1/PD-L1 therapy. We propose that the mechanisms promoting resistance mainly include T cell exclusion or exhaustion at the tumor site,immunosuppressive factors in the tumor microenvironment(TME), and a range of tumor-intrinsic factors. This review highlights the power of studying the cellular and molecular mechanisms of resistance to improve the rational design of combination therapeutic strategies that can be translated to the clinic. Here, we briefly discuss the development of PD-1/PD-L1 blockade agents and focus on the current issues and future prospects for potential combinatorial therapeutic strategies that include anti-PD-1/PD-L1 therapy, based upon the available preclinical and clinical data.
文摘In the monocot rice species Oryza sativa L., one of the most striking morphological processes during reproductive development is the concurrence of panicle development with the sequential elongation of upper internodes (UPIs). To elucidate the underlying molecular mechanisms, we cloned the rice gene NECK LEAF 1 (NL1), which when mutated results in delays in flowering time, smaller panicles with overgrown bracts and abnormal UPI elongation patterns. The NL1 gene encodes a GATA-type transcription factor with a single zinc finger domain, and its transcripts are de- tected predominantly in the bract primordia, which normally degenerate in the wild-type plants. Overexpression of NL1 in transgenic plants often gives rise to severe growth retardation, less vegetative phytomers and smaller leaves, suggesting that NL1 plays an important role in organ differentiation. A novel mutant allele of PLASTOCHRON1 (PLAD, a gene known to play a key role in regulating leaf initiation, was identified in this study. Genetic analysis demonstrated an interaction between nil and plal, with NL1 acting upstream of PLA1. The expression level and spatial pattern of PLA1 were found to be altered in the nil mutant. Furthermore, the expression of two regulators of flowering, Hd3a and OsMADS1, was also affected in the nil mutant. On the basis of these findings, we propose that NL1 is an intrinsic factor that modulates and coordinates organogenesis through regulating the expression of PLA1 and other regulatory genes during reproductive development in rice.
基金supported by the University of Electronic Science and Technology of China(Y02002010301080)the National Science Foundation of China(51502032)the financial support from Natural Science Foundation of Zhejiang Province(No.LQ14E020003)
文摘Metal-free, heteroatom functionalized carbon-based catalysts have made remarkable progress in recent years in a wide range of applications related to energy storage and energy generation. In this study, high surface area mesoporous ordered sulphur doped carbon materials are obtained via one-pot hydrothermal synthesis of carbon/SBA-15 composite after removal of in-situ synthesized hard template SiO2. 2-thiophenecarboxy acid as sulphur source gives rise to sulphur doping level of 5.5 wt%. Comparing with pristine carbon, the sulphur doped mesoporous ordered carbon demonstrates improved electro-catalytic activity in the oxygen reduction reaction in alkaline solution. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.81602599,31400752,81771781,and U1804281)the National Key Research and Development Program of China(Grant No.2016YFC1303501)。
文摘Objective:Esophageal squamous cell carcinoma(ESCC)has high morbidity and mortality rates worldwide.Cancer stem cells(CSCs)may cause tumor initiation,metastasis,and recurrence and are also responsible for chemotherapy and radiotherapy failures.Myeloid-derived suppressor cells(MDSCs),in contrast,are known to be involved in mediating immunosuppression.Here,we aimed to investigate the mechanisms of interaction of CSCs and MDSCs in the tumor microenvironment.Methods:ESCC tissues and cell lines were evaluated.Neural precursor cell expressed,developmentally downregulated 9(NEDD9)was knocked down and overexpressed by lentiviral transfection.Quantitative PCR,Western blot,immunohistochemistry,cell invasion,flow cytometry,cell sorting,multiplex chemokine profiling,and tumor growth analyses were performed.Results:Microarray analysis revealed 10 upregulated genes in esophageal CSCs.Only NEDD9 was upregulated in CSCs using the sphere-forming method.NEDD9 expression was correlated with tumor invasion(P=0.0218),differentiation(P=0.0153),and poor prognosis(P=0.0373).Additionally,NEDD9 was required to maintain the stem-like phenotype.Screening of chemokine expression in ESCC cells with NEDD9 overexpression and knockdown showed that NEDD9 regulated C-X-C motif chemokine ligand 8(CXCL8)expression via the ERK pathway.CXCL8 mediated the recruitment of MDSCs induced by NEDD9 in vitro and in vivo.MDSCs promoted the stemness of ESCC cells through NEDD9 via the Notch pathway.Conclusions:As a marker of ESCC,NEDD9 maintained the stemness of ESCC cells and regulated CXCL8 through the ERK pathway to recruit MDSCs into the tumor,suggesting NEDD9 as a therapeutic target and novel prognostic marker for ESCC.
基金supported by the 21C Innovation Laboratory,Contemporary Amperex Technology Ltd. by project No. 21C-OP-202103the National Natural Science Foundation of China(52072061)。
文摘LiMn_(y)Fe_(1-y)PO_(4) is considered a promising cathode material for next-generation lithium-ion batteries(LIBs) due to its high energy density and low cost. Its energy density degradation is often ascribed to the capacity loss during cycling. However, in this study, we find that the energy density degradation mainly roots in voltage decay. We have synthesized a series of LiMn_(y)Fe_(1-y)PO_(4) /C(0.5 ≤ y ≤ 0.8) and find this voltage decay is correlated with the Mn content. A high amount Mn leads to a heavier voltage decay.In-situ X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM) reveal the nature of this effect, which show a mismatch along the b-axis of-2.68%(charge) and +3.4%(discharge), a volume misfit of-4.41%(charge) and +4.54%(discharge) between Li_(x)Mn_(y)Fe_(1-y)PO_(4) and Mn_(y)Fe_(1-y)PO_(4) during phase transitions. The resultant misfit strains during Li+insertion compared to extraction result in structural degradations, such as amorphization and impurity(Mn F3) accumulation after cycling. The voltage decay can be alleviated by kinetic relaxations and recovered by a wild reannealing. This work demonstrates effective strategies to improve the energy density and cycling performance of LiMn_(y)Fe_(1-y)PO_(4) /C,providing good references for other LIB cathodes, such as the Li-rich cathodes.
基金supported by the Fundamental Research Funds for the Central Universities,China(ZYGX2019Z008)the National Natural Science Foundation of China(52072061)the Open Fund of the Key Laboratory for Renewable Energy,Chinese Academy of Sciences,Beijing Key Laboratory for New Energy Materials and Devices。
文摘Three-dimensional(3 D)frameworks have received much attention as an effective modification strategy for next-generation high-energy-density lithium metal batteries.However,the top-growth mode of lithium(Li)on the 3 D framework remains a tough challenge.To achieve a uniform bottom-up Li growth,a scheme involving Ag concentration gradient in 3 D PVDF framework(C-Ag/PVDF)is proposed.Ag nanoparticles with a concentration gradient induce an interface activity gradient in the 3 D framework,and this gradient feature is still maintained during the cycle.As a result,the C-Ag/PVDF framework delivers a long lifespan over 1800 h at a current density of 1 mA cm^(-2) with a capacity of 1 mAh cm^(-2),and shows an ultra-long life(>1300 h)even at a high current density of 4 mA cm^(-2) with a capacity of 4 mAh cm^(-2).The advantage of concentration gradient provides further insights into the optimal design of the 3 D framework for stable Li metal anode.
基金supported by the National Natural Science Foundation of China (22379121)Shenzhen Foundation Research Fund granted by the Shenzhen Science and Technology Innovation Committee (JCYJ20220530112812028)+1 种基金Fundamental Research Funds for the Central Universities (G2022KY0606)Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (No. 2023FE005)。
文摘Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design.
基金supported by the National Key Research and Development Program of China(2019YFD1000100)the National Natural Science Foundation of China(31622049 and 31872080).
文摘The function of serrate(SE)in miRNA biogenesis in Arabidopsis is well elucidated,whereas its role in plant drought resistance is largely unknown.In this study,we report that MdSE acts as a negative regulator of apple(Malus×domestica)drought resistance by regulating the expression levels of MdMYB88 and MdMYB124 and miRNAs,including mdm-miR156,mdm-miR166,mdm-miR172,mdm-miR319,and mdm-miR399.MdSE interacts with MdMYB88 and MdMYB124,two positive regulators of apple drought resistance.MdSE decreases the transcript and protein levels of MdMYB88 and MdMYB124,which directly regulate the expression of MdNCED3,a key enzyme in abscisic acid(ABA)biosynthesis.Furthermore,MdSE is enriched in the same region of the MdNECD3 promoter where MdMYB88/MdMYB124 binds.Consistently,MdSE RNAi transgenic plants are more sensitive to ABA-induced stomatal closure,whereas MdSE OE plants are less sensitive.In addition,under drought stress,MdSE is responsible for the biogenesis of mdm-miR399,a negative regulator of drought resistance,and negatively regulates miRNAs,including mdm-miR156,mdm-miR166,mdm-miR172,and mdm-miR319,which are positive regulators of drought resistance.Taken together,by revealing the negative role of MdSE,our results broaden our understanding of the apple drought response and provide a candidate gene for apple drought improvement through molecular breeding.
文摘Current lithium (Li) ion batteries consisting of graphite as the anode and intercalation materials (such as LiCoO2, LiNixCoyMn1-x-yO2, LiNi0.8Co0.1Al0.1O2) as the cathodes have almost reached their theoretical energy density of 300 Wh/kg. As a result, exploring high energy density batteries is urgent. Li-metal taking place of the graphite as the anode has several advantages. On one hand, it has a low operational voltage (-3.04 V versus standard hydrogen electrode) and a high specific capacity of 3860 mAh/g offering the battery with high energy density. On the other hand, when the Li-metal as the anode, the cathodes can be extended to Li-free or Li-deficient materials, which means the cathodes have more choices. For instance, S, O2, conversion reaction-type materials can be optional. While, the introduction of Li-metal anodes brings in several challenges [1–3]. Firstly, Li-metal is highly electrochemical and electrochemical active to have undesirable reactions with conventional carbonate-based liquid electrolytes, leading a low Coulombic efficiency and large polarizations. Secondly, the formed Li dendrites due to uneven Li+ distribution during plating and stripping has the chances of percolating separators leading to short circuits. Thirdly, Li metal is a host-free material (~5 μm have a capacity of 1 mAh/cm2), thus it suffers from a huge volume change, which brings in difficulty in the cell design.