Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand ...Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts.展开更多
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac...Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.展开更多
Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne o...Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne of Fe source on the active site structure and final ORR performance is highly desirbale for fur-ther development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts usingZIF-8 and various iron salts (Fe(acac)3, FeCI3, Fe(NO3)3) as precusors. We found that the iron precursors,mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology ofFe, namely forming the Fe-Nx coordination or Fe3C nanoparticles, as well as the site density, therefore,significantly affecting the ORR activity. Among the three iron sources, Fe(acac)3 is most advantageous tothe preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated bestORR performance.展开更多
基金the National Natural Science Foundation of China(Grant No.62375032)the Natural Science Foundation of Chongqing(Grant No.CSTB2023TIADKPX0017)+2 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)the China Postdoctoral Science Foundation(Grant No.BX20230355)the Department of Education of Guizhou Province(Guizhou Teaching and Technology[2023]015)。
文摘Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts.
基金supported by the National Natural Science Foundation of China(21633008,21433003,U1601211,21733004)National Science and Technology Major Project(2016YFB0101202)+1 种基金Jilin Province Science and Technology Development Program(20150101066JC,20160622037JC,20170203003SF,20170520150JH)Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts(WQ20122200077)
文摘Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.
基金supported by the National Natural Science Foundation of China(21633008,21433003,U1601211,21733004)National Science and Technology Major Project(2016YFB0101202)+2 种基金Jilin Province Science and Technology Development Program(20150101066JC,20160622037JC,20170203003SF,20170520150JH)Hundred Talents Program of Chinese Academy of Sciencesthe Recruitment Program of Foreign Experts(WQ20122200077)
文摘Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne of Fe source on the active site structure and final ORR performance is highly desirbale for fur-ther development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts usingZIF-8 and various iron salts (Fe(acac)3, FeCI3, Fe(NO3)3) as precusors. We found that the iron precursors,mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology ofFe, namely forming the Fe-Nx coordination or Fe3C nanoparticles, as well as the site density, therefore,significantly affecting the ORR activity. Among the three iron sources, Fe(acac)3 is most advantageous tothe preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated bestORR performance.