Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl...Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
With the accelerated urbanization in China, passenger demand has dramatically increased in large cities, and traffic congestion has become serious in recent years. Developing public urban rail transit systems is an in...With the accelerated urbanization in China, passenger demand has dramatically increased in large cities, and traffic congestion has become serious in recent years. Developing public urban rail transit systems is an indispensable approach to overcome these problems. However, the high energy consumption of daily operations is an emerging issue due to increased rail transit networks and passenger demands. Thus, reducing the energy consumption and operational cost by using advanced optimization methodologies is an urgent task for operation managers. This work systematically introduces energysaving approaches for urban rail transit systems in three aspects, namely, train speed profile optimization, utilization of regenerative energy, and integrated optimization of train timetable and speed profile. Future research directions in this field are also proposed to meet increasing passenger demands and network?based urban rail transit systems.展开更多
The incorporation of disruptive innovations into the transportation industry will inevitably cause major upheavals in the transportation sector.However,existing research lacks systematic theories and methodologies to ...The incorporation of disruptive innovations into the transportation industry will inevitably cause major upheavals in the transportation sector.However,existing research lacks systematic theories and methodologies to represent the underlying characteristics of future urban transport systems.Furthermore,emerging modes in urban mobility have not been sufficiently studied.The National Natural Science Foundation of China(NSFC)officially approved the Basic Science Center project titled“Future Urban Transport Management”in 2022.The project members include leading scientists and engineers from Beijing Jiaotong University,Beihang University,and Beijing Transport Institute.Based on a wide range of previous projects by the consortium on urban mobility and sustainable cities,this project will encompass transdisciplinary and interdisciplinary research to explore critical issues affecting future urban traffic management.It aims to develop fundamental theories and methods based on social and technological developments in the near future and explores innovative solutions to implement alongside these emerging developments in urban mobility.展开更多
Train speed trajectory optimization is a significant issue in railway traffic systems, and it plays a key role in determining energy consumption and travel time of trains. Due to the complexity of real-world operation...Train speed trajectory optimization is a significant issue in railway traffic systems, and it plays a key role in determining energy consumption and travel time of trains. Due to the complexity of real-world operational environments, a variety of factors can lead to the uncertainty in energy-consumption. To appropriately characterize the uncertainties and generate a robust speed trajectory, this study specifically proposes distance-speed networks over the inter-station and treats the uncertainty with respect to energy consumption as discrete samplebased random variables with correlation. The problem of interest is formulated as a stochastic constrained shortest path problem with travel time threshold constraints in which the expected total energy consumption is treated as the evaluation index. To generate an approximate optimal solution, a Lagrangian relaxation algorithm combined with dynamic programming algorithm is proposed to solve the optimal solutions. Numerical examples are implemented and analyzed to demonstrate the performance of proposed approaches.展开更多
Train speed profile optimization is an efficient approach to reducing energy consumption in urban rail transit systems.Different from most existing studies that assume deterministic parameters as model inputs,this pap...Train speed profile optimization is an efficient approach to reducing energy consumption in urban rail transit systems.Different from most existing studies that assume deterministic parameters as model inputs,this paper proposes a robust energy-efficient train speed profile optimization approach by considering the uncertainty of train modeling parameters.Specifically,we first construct a scenario-based position-time-speed(PTS)network by considering resistance parameters as discrete scenariobased random variables.Then,a percentile reliability model is proposed to generate a robust train speed profile,by which the scenario-based energy consumption is less than the model objective value at a confidence level.To solve the model efficiently,we present several algorithms to eliminate the infeasible nodes and arcs in the PTS network and propose a model reformulation strategy to transform the original model into an equivalent linear programming model.Lastly,on the basis of our field test data collected in Beijing metro Yizhuang line,a series of experiments are conducted to verify the effectiveness of the model and analyze the influences of parameter uncertainties on the generated train speed profile.展开更多
基金supported by the National Natural Science Foundation of China(72288101,72201029,and 72322022).
文摘Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
文摘With the accelerated urbanization in China, passenger demand has dramatically increased in large cities, and traffic congestion has become serious in recent years. Developing public urban rail transit systems is an indispensable approach to overcome these problems. However, the high energy consumption of daily operations is an emerging issue due to increased rail transit networks and passenger demands. Thus, reducing the energy consumption and operational cost by using advanced optimization methodologies is an urgent task for operation managers. This work systematically introduces energysaving approaches for urban rail transit systems in three aspects, namely, train speed profile optimization, utilization of regenerative energy, and integrated optimization of train timetable and speed profile. Future research directions in this field are also proposed to meet increasing passenger demands and network?based urban rail transit systems.
基金This work was supported by the National Natural Science Foundation of China(Grant No.72288101).
文摘The incorporation of disruptive innovations into the transportation industry will inevitably cause major upheavals in the transportation sector.However,existing research lacks systematic theories and methodologies to represent the underlying characteristics of future urban transport systems.Furthermore,emerging modes in urban mobility have not been sufficiently studied.The National Natural Science Foundation of China(NSFC)officially approved the Basic Science Center project titled“Future Urban Transport Management”in 2022.The project members include leading scientists and engineers from Beijing Jiaotong University,Beihang University,and Beijing Transport Institute.Based on a wide range of previous projects by the consortium on urban mobility and sustainable cities,this project will encompass transdisciplinary and interdisciplinary research to explore critical issues affecting future urban traffic management.It aims to develop fundamental theories and methods based on social and technological developments in the near future and explores innovative solutions to implement alongside these emerging developments in urban mobility.
文摘Train speed trajectory optimization is a significant issue in railway traffic systems, and it plays a key role in determining energy consumption and travel time of trains. Due to the complexity of real-world operational environments, a variety of factors can lead to the uncertainty in energy-consumption. To appropriately characterize the uncertainties and generate a robust speed trajectory, this study specifically proposes distance-speed networks over the inter-station and treats the uncertainty with respect to energy consumption as discrete samplebased random variables with correlation. The problem of interest is formulated as a stochastic constrained shortest path problem with travel time threshold constraints in which the expected total energy consumption is treated as the evaluation index. To generate an approximate optimal solution, a Lagrangian relaxation algorithm combined with dynamic programming algorithm is proposed to solve the optimal solutions. Numerical examples are implemented and analyzed to demonstrate the performance of proposed approaches.
基金This research is supported by the Fundamental Research Funds for the Central Universities(Grant No.2019YJS232)the National Natural Science Foundation of China(Grant Nos.71901016 and 71825004)+2 种基金the Natural Science Foundation of Beijing(Grant No.L191015)the State Key Laboratory of Rail Traffic Control and Safety(Grant No.RCS2020ZZ004)the Beijing Laboratory of Urban Rail Transit,and the Beijing Key Laboratory of Urban Rail Transit Automation and Control.
文摘Train speed profile optimization is an efficient approach to reducing energy consumption in urban rail transit systems.Different from most existing studies that assume deterministic parameters as model inputs,this paper proposes a robust energy-efficient train speed profile optimization approach by considering the uncertainty of train modeling parameters.Specifically,we first construct a scenario-based position-time-speed(PTS)network by considering resistance parameters as discrete scenariobased random variables.Then,a percentile reliability model is proposed to generate a robust train speed profile,by which the scenario-based energy consumption is less than the model objective value at a confidence level.To solve the model efficiently,we present several algorithms to eliminate the infeasible nodes and arcs in the PTS network and propose a model reformulation strategy to transform the original model into an equivalent linear programming model.Lastly,on the basis of our field test data collected in Beijing metro Yizhuang line,a series of experiments are conducted to verify the effectiveness of the model and analyze the influences of parameter uncertainties on the generated train speed profile.
基金This research is supported by Rencai Foundation of Beijing Jiaotong University (No. 2005RC035), and Research Foundation of Beijing Jiaotong University (No. 2005SM028)