期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
UWB Positioning System Based on Genetic Algorithm 被引量:2
1
作者 Bin Xia Xianzhi Zheng +1 位作者 liye zhang Lei Zhao 《Journal of Computer and Communications》 2021年第4期110-118,共9页
In order to enhance the positioning accuracy, a UWB positioning system based on genetic algorithm is proposed. Firstly, it uses the DW1000 module to measure the distance, and preprocesses the measured data to remove n... In order to enhance the positioning accuracy, a UWB positioning system based on genetic algorithm is proposed. Firstly, it uses the DW1000 module to measure the distance, and preprocesses the measured data to remove noise. Then, a positioning equation is established according to the processed distance information, and the genetic algorithm is used to solve the equation to obtain the coordinates of the unknown node. The experimental results show that the measured positioning accuracy is within 30 cm, which means that the system can obtain a good positioning effect and meet the need for precise positioning. 展开更多
关键词 LOCATION Ultra Wide Band Genetic Algorithm
下载PDF
A Visual Indoor Localization Method Based on Efficient Image Retrieval
2
作者 Mengyan Lyu Xinxin Guo +1 位作者 Kunpeng zhang liye zhang 《Journal of Computer and Communications》 2024年第2期47-66,共20页
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l... The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method. 展开更多
关键词 Visual Indoor Positioning Feature Point Matching Image Retrieval Position Calculation Five-Point Method
下载PDF
Hybrid Location Algorithm Based on Cuckoo and Statistical Manifold
3
作者 Xiaofeng Qin Bin Xia +1 位作者 liye zhang Xianzhi Zheng 《Journal of Computer and Communications》 2021年第3期110-117,共8页
To improve the location accuracy, a hybrid location algorithm based on cuckoo and statistical manifold method is proposed. It combines the cuckoo algorithm's strong global optimization ability and the statistical ... To improve the location accuracy, a hybrid location algorithm based on cuckoo and statistical manifold method is proposed. It combines the cuckoo algorithm's strong global optimization ability and the statistical manifold<span>’</span><span>s accurate positioning ability fully. The simulation results show that the hybrid location algorithm has higher accuracy and reduces the influence of initial value selection on location accuracy.</span> 展开更多
关键词 Hybrid Location Algorithm Statistical Manifold Method Cuckoo Algorithm Location Accuracy
下载PDF
Adaptive Recurrent Iterative Updating Stereo Matching Network
4
作者 Qun Kong liye zhang +2 位作者 Zhuang Wang Mingkai Qi Yegang Li 《Journal of Computer and Communications》 2023年第3期83-98,共16页
When training a stereo matching network with a single training dataset, the network may overly rely on the learned features of the single training dataset due to differences in the training dataset scenes, resulting i... When training a stereo matching network with a single training dataset, the network may overly rely on the learned features of the single training dataset due to differences in the training dataset scenes, resulting in poor performance on all datasets. Therefore, feature consistency between matched pixels is a key factor in solving the network’s generalization ability. To address this issue, this paper proposed a more widely applicable stereo matching network that introduced whitening loss into the feature extraction module of stereo matching, and significantly improved the applicability of the network model by constraining the variation between salient feature pixels. In addition, this paper used a GRU iterative update module in the disparity update calculation stage, which expanded the model’s receptive field at multiple resolutions, allowing for precise disparity estimation not only in rich texture areas but also in low texture areas. The model was trained only on the Scene Flow large-scale dataset, and the disparity estimation was conducted on mainstream datasets such as Middlebury, KITTI 2015, and ETH3D. Compared with earlier stereo matching algorithms, this method not only achieves more accurate disparity estimation but also has wider applicability and stronger robustness. 展开更多
关键词 Stereo Matching Whitening Loss Feature Consistency Convolutional Neural Network GRU
下载PDF
Single Image Desnow Based on Vision Transformer and Conditional Generative Adversarial Network for Internet of Vehicles 被引量:1
5
作者 Bingcai Wei Di Wang +1 位作者 Zhuang Wang liye zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1975-1988,共14页
With the increasing popularity of artificial intelligence applications,machine learning is also playing an increasingly important role in the Internet of Things(IoT)and the Internet of Vehicles(IoV).As an essential pa... With the increasing popularity of artificial intelligence applications,machine learning is also playing an increasingly important role in the Internet of Things(IoT)and the Internet of Vehicles(IoV).As an essential part of the IoV,smart transportation relies heavily on information obtained from images.However,inclement weather,such as snowy weather,negatively impacts the process and can hinder the regular operation of imaging equipment and the acquisition of conventional image information.Not only that,but the snow also makes intelligent transportation systems make the wrong judgment of road conditions and the entire system of the Internet of Vehicles adverse.This paper describes the single image snowremoval task and the use of a vision transformer to generate adversarial networks.The residual structure is used in the algorithm,and the Transformer structure is used in the network structure of the generator in the generative adversarial networks,which improves the accuracy of the snow removal task.Moreover,the vision transformer has good scalability and versatility for larger models and has a more vital fitting ability than the previously popular convolutional neural networks.The Snow100K dataset is used for training,testing and comparison,and the peak signal-to-noise ratio and structural similarity are used as evaluation indicators.The experimental results show that the improved snow removal algorithm performs well and can obtain high-quality snow removal images. 展开更多
关键词 Artificial intelligence Internet of Things vision transformer deep learning image desnow
下载PDF
Single Image Deraining Using Dual Branch Network Based on Attention Mechanism for IoT 被引量:1
6
作者 Di Wang Bingcai Wei liye zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1989-2000,共12页
Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information... Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information and image distortion,resulting in difficulties and obstacles to the extraction of key information,affecting the judgment of the real situation in the process of the Internet of Things,and causing system decision-making errors and accidents.In this paper,we mainly solve the problem of rain on the image occlusion,remove the rain grain in the image,and get a clear image without rain.Therefore,the single image deraining algorithm is studied,and a dual-branch network structure based on the attention module and convolutional neural network(CNN)module is proposed to accomplish the task of rain removal.In order to complete the rain removal of a single image with high quality,we apply the spatial attention module,channel attention module and CNN module to the network structure,and build the network using the coder-decoder structure.In the experiment,with the structural similarity(SSIM)and the peak signal-to-noise ratio(PSNR)as evaluation indexes,the training and testing results on the rain removal dataset show that the proposed structure has a good effect on the single image deraining task. 展开更多
关键词 Internet of Things image deraining dual-branch network structure attention module convolutional neural network
下载PDF
A Semi-Supervised WLAN Indoor Localization Method Based on l1-Graph Algorithm 被引量:1
7
作者 liye zhang Lin Ma Yubin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期55-61,共7页
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle... For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase. 展开更多
关键词 indoor location estimation l1-graph algorithm semi-supervised learning wireless local area networks(WLAN)
下载PDF
Online 3D Packing Problem Based on Bi-Value Guidance 被引量:1
8
作者 Mingkai Qi liye zhang 《Journal of Computer and Communications》 2023年第7期156-173,共18页
The online 3D packing problem has received increasing attention in recent years due to its practical value. However, the problem itself possesses some peculiar properties, such as sequential decision-making and the la... The online 3D packing problem has received increasing attention in recent years due to its practical value. However, the problem itself possesses some peculiar properties, such as sequential decision-making and the large size of the state space, which have made the use of reinforcement learning with Markov decision processes a popular approach for solving this problem. In this paper, we focus on the problem of high variance in value estimation caused by reward uncertainty in the presence of highly uncertain dynamics. To address this, proposed a solution based on auxiliary tasks and intrinsic rewards for the online 3D bin packing problem, guided by a binary-valued network, to assist the agent in learning the policy within the framework of actor-critic deep reinforcement learning. Specifically, the maintenance of two-valued networks and the utilization of multi-valued network estimates are employed to replace the original value estimates, aiming to provide better guidance for the learning of policy networks. Experimentally, it has been demonstrated that our model can achieve more robust learning and outperform previous works in terms of performance. 展开更多
关键词 Deep Learning Reinforcement Learning Bin Packing Value Estimation
下载PDF
Silver Nanowires Contained Nanofluids with Enhanced Optical Absorption and Thermal Transportation Properties 被引量:1
9
作者 Dahai Zhu Guiwen Huang +3 位作者 liye zhang Yan He Huaqing Xie Wei Yu 《Energy & Environmental Materials》 2019年第1期22-29,共8页
Two kinds of silver nanowires(100 nm in diameter, 20 μm and 100 μm in length) are prepared. The thermo-physical characteristics, viscosity, and photothermal conversion performance of the silver nanowires(AgNWs)conta... Two kinds of silver nanowires(100 nm in diameter, 20 μm and 100 μm in length) are prepared. The thermo-physical characteristics, viscosity, and photothermal conversion performance of the silver nanowires(AgNWs)contained ethylene glycol nanofluids are investigated in detail. It is found that thermal conductivity of 100 μm AgNWs contained nanofluids is higher than that of 20 μm AgNWs with the same diameters of 100 nm. Viscosity test shows that the nanofluid is a Newtonian fluid, and the longer silver nanowires, the greater viscosity. In addition, photothermal conversion efficiency of silver nanowires contained nanofluid is studied. We can observe that the 100 μm AgNWs contained nanofluid has a higher photothermal conversion efficiency than that containing 20 μm AgNWs. Moreover, we find that there is a certain correlation between heat transfer and photothermal conversion of nanofluid. It demonstrates that the high heat transfer property of nanofluid will benefit for its photothermal conversion efficiency and the mechanism is proposed. This work provides a new idea to improve photothermal conversion efficiency. We can choose materials with high thermal conductivity and strong light absorption ability to enhance the photothermal conversion performance of nanofluids. 展开更多
关键词 NANOFLUID photothermal property silver nanowires thermal conductivity
下载PDF
Design of Indoor Security Robot based on Robot Operating System
10
作者 Faxu He liye zhang 《Journal of Computer and Communications》 2023年第5期93-107,共15页
The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has... The design and implementation of indoor security robot can well integrate the two fields of indoor navigation and object detection, in order to achieve a more powerful robot system, the development of this project has certain theoretical research significance and practical application value. The project development is completed in ROS (Robot Operating System). The main tools or frameworks used include AMCL (Adaptive Monte Carlo Localization) package, SLAM (Simultaneous Localization and Mapping) algorithm, Darknet deep learning framework, YOLOv3 (You Only Look Once)algorithm, etc. The main development methods include odometer information fusion, coordinate transformation, localization and mapping, path planning, YOLOv3 model training, function package configuration and deployment. Indoor security robot has two main functions: first, it can complete real-time localization, mapping and navigation of indoor environment through sensors such as lidar and camera;Second, object detection is accomplished through USB camera. Through the detailed analysis and research of the functional design of the two modules, the expected function is finally realized, which can meet the daily use needs. 展开更多
关键词 Indoor Security Robot Indoor Navigation SLAM Object Detection YOLO
下载PDF
Influence of construction-induced damage on the degradation of freeze—thawed lightweight cellular concrete 被引量:2
11
作者 Xin LIU liye zhang +2 位作者 Zhiwei SHAO Yunqiang SHI Lizhi SUN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第3期781-792,共12页
During the construction of lightweight cellular concrete(LCC),material damage frequently occurs,causing the degradation and deterioration of the mechanical performance,durability,and subgrade quality of LCC.The constr... During the construction of lightweight cellular concrete(LCC),material damage frequently occurs,causing the degradation and deterioration of the mechanical performance,durability,and subgrade quality of LCC.The construction-induced damage can be more significant than those from the service environment of LCC,such as freeze-thaw(F-T)action in cold regions.However,the effect of construction-induced damage on LCC during F-T cycles is often ignored and the deterioration mechanisms are not yet clarified.In this study,we investigated the factors causing damage during construction using a sample preparation method established to simulate the damage in the laboratory setting.We conducted F-T cycle tests and microstructural characterization to study the effect of microstructural damage on the overall strength of LCC with different water contents under F-T actions.We established the relationship between the pore-area ratio and F-T cycle times,pore-area ratio,and strength,as well as the F-T cycle times and strength under different damage forms.The damage evolution is provided with the rationality of the damage equation,verified by comparing the measured and predicted damage variables.This study would serve as a guide for the construction and performance of LCC in cold regions. 展开更多
关键词 lightweight cellular concrete construction-induced damage freeze-thaw action MICROSTRUCTURE degradation mechanism
原文传递
Point mutations of homologs as an adaptive solution to the gene loss
12
作者 Guosheng Ma Xiaojing Zhao +1 位作者 Xinyi Shentu liye zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2023年第7期511-518,共8页
Gene loss is common and influences genome evolution trajectories.Multiple adaptive strategies to compensate for gene loss have been observed,including copy number gain of paralogous genes and mutations in genes of the... Gene loss is common and influences genome evolution trajectories.Multiple adaptive strategies to compensate for gene loss have been observed,including copy number gain of paralogous genes and mutations in genes of the same pathway.By using the Ubl-specific protease 2(ULP2)eviction model,we identify compensatory mutations in the homologous gene ULP1 by laboratory evolution and find that these mutations are capable of rescuing defects caused by the loss of ULP2.Furthermore,bioinformatics analysis of genomes of yeast gene knockout library and natural yeast isolate datasets suggests that point mutations of a homologous gene might be an additional mechanism to compensate for gene loss. 展开更多
关键词 Gene loss ULP2 Homologous gene Compensatory mutation Genome evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部