This review describes the application of non-thermal plasma(NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier lay...This review describes the application of non-thermal plasma(NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier layer fabrication over the past decades due to unpollution,high speed,low-costing.The applications of NTP technology have achieved numerous exciting results in high barrier packaging area.Now it seemly demands a detailed review to summarize the past works and direct the future developments.This review focuses on the different NTP resources applied in the high barrier area,the role of plasma surface modification on packaging film surface properties,and the deposition of different barrier coatings based on NTP technology.In particular,this review emphasizes the cutting-edge technologies of NTP on interlayer deposition with organic,inorganic for multilayer barriers fabrication.The future prospects of NTP technology in high barrier film areas are also described.展开更多
Large area uniform plasma sources,such as high-density magnetized inductively coupled plasma(ICP)and helicon plasma,have broad applications in industry.A comprehensive comparison of ICP and helicon plasma,excited by a...Large area uniform plasma sources,such as high-density magnetized inductively coupled plasma(ICP)and helicon plasma,have broad applications in industry.A comprehensive comparison of ICP and helicon plasma,excited by a single-loop antenna,is presented in this paper from the perspectives of mode transition,hysteresis behavior,and density distribution.The E-H mode transition in ICP and the E-H-W mode transition in helicon plasma are clearly observed in the experiments.Besides,the considerable variation of hysteresis behavior from inverse hysteresis to normal hysteresis by the influence of the magnetic field is explored.The bi-Maxwellian and Maxwellian electron energy distribution functions in each discharge are used to explain this phenomenon,which is essentially related to the transition from a nonlocal kinetic property to a local kinetic property of electrons.In addition,we notice that the plasma density,in the radial direction,is peaked in the center of the tube in ICP,but a complicated distribution is formed in helicon plasma.In the axial direction,the maximum plasma density is still in the center of the antenna in ICP,whereas the highest plasma density is located downstream,far away from the antenna,in helicon plasma.It is believed that the reflected electrons in the sheath and pre-sheath by the upper metallic endplate and downstream propagated helicon wave will be responsible for this plasma density profile in helicon plasma.Due to the constrained electron motion in the magnetic field,an extremely uniform density distribution will be obtained with an appropriate axial magnetic field in the wave discharge mode.展开更多
In this study,the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration ...In this study,the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration of ionized nitrogen N+and ionized zinc Zn+were increased,which promoted the formation of ZnO films and lowered the necessary substrate temperature.After optimization,a co-doped p-type ZnO thin film with a resistivity lower than 0.35Ωcm and a hole concentration higher than 5.34×10^(18)cm^(-3)is grown at 280°C.X-ray diffraction results confirm that Al-N co-doping does not destruct the ZnO wurtzite structure.X-ray photoelectron spectroscopy demonstrates that the presence of Al promotes the formation of acceptor(No)defects in ZnO films,and ensures the role of Al in stabilizing p-type ZnO.展开更多
A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-ter...A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(Ⅱ) as iron source and hydrogen gas or hydrogen plasma as the coreactant.The films deposited with hydrogen gas are demonstrated polycrystalline with body-centered cubic Fe.However,for the films deposited with hydrogen plasma,the amorphous phase of iron carbide is obtained.The influence of the deposition temperature on iron and iron carbide characteristics have been investigated.展开更多
In this paper, we report the modification of polyethylene(45 μm in thickness) webs through a roll-to-roll dielectric barrier discharge plasma treatment in an open atmospheric environment.Our work differs from the nor...In this paper, we report the modification of polyethylene(45 μm in thickness) webs through a roll-to-roll dielectric barrier discharge plasma treatment in an open atmospheric environment.Our work differs from the normal adopted corona discharge treatment at an atmospheric pressure, in that three monomers: allylamine, acrylic acid, and ethanol, are inlet into the discharge zone by argon(Ar) carrier gas. As a comparison, Ar plasma treatment is also carried out. We focus on the aging properties of treated plastics in the open air. It is found that the modified webs can retain the surface energy as high as 50.0?±?1 mN m^(-1) for more than three months. After characterization of the as-prepared and aged samples by the surface roughness, the wettability, and the chemical structure, the mechanism of retaining high surface energy is then presumed. We think that the initial high surface energy just after plasma treatment is correlated to the grafted functional groups, while the over 50.0 mN m^(-1) remaining surface energy after three month aging is due to the stable concentrations of oxygen-contained and nitrogencontained groups by post-reaction on the surfaces.展开更多
High power impulse magnetron sputtering(HiPIMS) has attracted a great deal of attention because the sputtered material is highly ionized during the coating process,which has been demonstrated to be advantageous for ...High power impulse magnetron sputtering(HiPIMS) has attracted a great deal of attention because the sputtered material is highly ionized during the coating process,which has been demonstrated to be advantageous for better quality coating.Therefore,the mechanism of the HiPIMS technique has recently been investigated.In this paper,the current knowledge of HiPIMS is described.We focus on the mechanical properties of the deposited thin film in the latest applications,including hard coatings,adhesion enhancement,tribological performance,and corrosion protection layers.A description of the electrical,optical,photocatalytic,and functional coating applications are presented.The prospects for HiPIMS are also discussed in this work.展开更多
Dear Editor, Diabetic peripheral neuropathy (DPN) is a frequently oc-curring complication of diabetes. DPN is diagnosed on the basis of findings of neural electrophysiological study, such as the nerve conduction stu...Dear Editor, Diabetic peripheral neuropathy (DPN) is a frequently oc-curring complication of diabetes. DPN is diagnosed on the basis of findings of neural electrophysiological study, such as the nerve conduction study (NCS). The most common NCS manifestations of DPN include slow velocity, prolonged la-tency, and decreased amplitude. Risk factors for DPN in-elude age, hyperglycemia, dyslipidemia, smoking, atherosclerotic cardiovascular disease, peripheral arterial disease, diabetic nephropathy, and diabetic retinopathy.展开更多
基金financially supported by National Natural Science Foundation of China (Nos.11505013,11775028)Beijing Municipal Excellent Talent Training Foundation (No.2016000026833ZK12)+2 种基金Science and Technology Innovational Serviceability Building Project of Beijing Municipal Education Commission (No.PXM2017_014223_000066)Excellent Talent Selection and Training Project of BIGC of China (No.04190117004/026)Institute level project of BIGC of China (No.Eb201502)
文摘This review describes the application of non-thermal plasma(NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier layer fabrication over the past decades due to unpollution,high speed,low-costing.The applications of NTP technology have achieved numerous exciting results in high barrier packaging area.Now it seemly demands a detailed review to summarize the past works and direct the future developments.This review focuses on the different NTP resources applied in the high barrier area,the role of plasma surface modification on packaging film surface properties,and the deposition of different barrier coatings based on NTP technology.In particular,this review emphasizes the cutting-edge technologies of NTP on interlayer deposition with organic,inorganic for multilayer barriers fabrication.The future prospects of NTP technology in high barrier film areas are also described.
基金This study was partly supported by National Natural Science Foundation of China(No.11975047)。
文摘Large area uniform plasma sources,such as high-density magnetized inductively coupled plasma(ICP)and helicon plasma,have broad applications in industry.A comprehensive comparison of ICP and helicon plasma,excited by a single-loop antenna,is presented in this paper from the perspectives of mode transition,hysteresis behavior,and density distribution.The E-H mode transition in ICP and the E-H-W mode transition in helicon plasma are clearly observed in the experiments.Besides,the considerable variation of hysteresis behavior from inverse hysteresis to normal hysteresis by the influence of the magnetic field is explored.The bi-Maxwellian and Maxwellian electron energy distribution functions in each discharge are used to explain this phenomenon,which is essentially related to the transition from a nonlocal kinetic property to a local kinetic property of electrons.In addition,we notice that the plasma density,in the radial direction,is peaked in the center of the tube in ICP,but a complicated distribution is formed in helicon plasma.In the axial direction,the maximum plasma density is still in the center of the antenna in ICP,whereas the highest plasma density is located downstream,far away from the antenna,in helicon plasma.It is believed that the reflected electrons in the sheath and pre-sheath by the upper metallic endplate and downstream propagated helicon wave will be responsible for this plasma density profile in helicon plasma.Due to the constrained electron motion in the magnetic field,an extremely uniform density distribution will be obtained with an appropriate axial magnetic field in the wave discharge mode.
基金supported by National Natural Science Foundation of China(Nos.11875090,12075032,11775028,11875088,11974048)Beijing Municipal National Science Foundation(Nos.1192008,KZ202010015022)BIGC(Nos.Ea201901,Ee202001)。
文摘In this study,the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration of ionized nitrogen N+and ionized zinc Zn+were increased,which promoted the formation of ZnO films and lowered the necessary substrate temperature.After optimization,a co-doped p-type ZnO thin film with a resistivity lower than 0.35Ωcm and a hole concentration higher than 5.34×10^(18)cm^(-3)is grown at 280°C.X-ray diffraction results confirm that Al-N co-doping does not destruct the ZnO wurtzite structure.X-ray photoelectron spectroscopy demonstrates that the presence of Al promotes the formation of acceptor(No)defects in ZnO films,and ensures the role of Al in stabilizing p-type ZnO.
基金financially supported by National Natural Science Foundation of China(No.11775028)Collaborative Innovation Center of Green Printing&Publishing Technology(No.15208)Beijing Institute of Graphic Communication Project(Nos.Ea201801 04190119001-020 and 12000400001)
文摘A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(Ⅱ) as iron source and hydrogen gas or hydrogen plasma as the coreactant.The films deposited with hydrogen gas are demonstrated polycrystalline with body-centered cubic Fe.However,for the films deposited with hydrogen plasma,the amorphous phase of iron carbide is obtained.The influence of the deposition temperature on iron and iron carbide characteristics have been investigated.
基金Supported by National Natural Science Foundation of China(Nos.11775028,11505013)Beijing Municipal National Science Foundation(Nos.4162024,KM201510015009)the Collaborative Innovation Center of Green Printing&Publishing Technology(No.20160113)
文摘In this paper, we report the modification of polyethylene(45 μm in thickness) webs through a roll-to-roll dielectric barrier discharge plasma treatment in an open atmospheric environment.Our work differs from the normal adopted corona discharge treatment at an atmospheric pressure, in that three monomers: allylamine, acrylic acid, and ethanol, are inlet into the discharge zone by argon(Ar) carrier gas. As a comparison, Ar plasma treatment is also carried out. We focus on the aging properties of treated plastics in the open air. It is found that the modified webs can retain the surface energy as high as 50.0?±?1 mN m^(-1) for more than three months. After characterization of the as-prepared and aged samples by the surface roughness, the wettability, and the chemical structure, the mechanism of retaining high surface energy is then presumed. We think that the initial high surface energy just after plasma treatment is correlated to the grafted functional groups, while the over 50.0 mN m^(-1) remaining surface energy after three month aging is due to the stable concentrations of oxygen-contained and nitrogencontained groups by post-reaction on the surfaces.
基金supported by National Natural Science Foundation of China (Grant Nos.50875132,60573172)Beijing Municipal National Science Foundation (Grant Nos.4162024,KZ201510015014,KZ 04190116009/001,KM201510015009,KM201510015002)the Collaborative Innovation Center of Green Printing & Publishing Technology (No.20160113)
文摘High power impulse magnetron sputtering(HiPIMS) has attracted a great deal of attention because the sputtered material is highly ionized during the coating process,which has been demonstrated to be advantageous for better quality coating.Therefore,the mechanism of the HiPIMS technique has recently been investigated.In this paper,the current knowledge of HiPIMS is described.We focus on the mechanical properties of the deposited thin film in the latest applications,including hard coatings,adhesion enhancement,tribological performance,and corrosion protection layers.A description of the electrical,optical,photocatalytic,and functional coating applications are presented.The prospects for HiPIMS are also discussed in this work.
基金supported by the Shanghai Pujiang Program (10PJ1406900 to Dr. Lizhen Yang)the National Natural Science Foundation of China (81570754 to Dr. Lizhen Yang)
文摘Dear Editor, Diabetic peripheral neuropathy (DPN) is a frequently oc-curring complication of diabetes. DPN is diagnosed on the basis of findings of neural electrophysiological study, such as the nerve conduction study (NCS). The most common NCS manifestations of DPN include slow velocity, prolonged la-tency, and decreased amplitude. Risk factors for DPN in-elude age, hyperglycemia, dyslipidemia, smoking, atherosclerotic cardiovascular disease, peripheral arterial disease, diabetic nephropathy, and diabetic retinopathy.