Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium...Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.展开更多
Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disa...Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.展开更多
Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic...Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic effects are unknown.In this study,network pharmacology,molecular docking research and experimental verification methods were used to preliminarily explore the bioactive compounds and potential target mechanisms of SND anxiolytic.Methods:The active components and corresponding targets of SND were collected by TCMSP.GeneCards,OMIM,PharmGkb,TTD and Drugbank were used to search for the targets of anxiety disorders.The core target of SND in the treatment of anxiety was screened by PPI.R language was used to analyze the intersection targets of SND in the treatment of anxiety disorders by GO and KEGG enrichment analysis.AutoDock Vina was used for molecular docking,and Discovery Studio was used for visual conformation analysis after docking.The anti-anxiety effect and molecular mechanism of SND were studied by in vivo experiment.Results:Based on network pharmacological analysis,we obtained 112 active ingredients and 350 effective targets related to anxiety from SND.In PPI analysis,26 targets such as STAT3,MAPK3,MAPK1,MAPK14,SRC,HSP90AA1,TP53 and PIK3CA were identified as core targets.GO and KEGG analysis showed that the anxiolytic mechanism of SND may be related to the neuroactive ligand-receptor interaction pathway and inflammatory pathway.Molecular docking showed that quercetin,naringenin,licochalcone A had high affinity with JAK2,MAPK14 and MAPK3.Animal experiments have shown that SND reverses the upregulation of GluN2B(NMDAR)and GluA1(AMPAR)proteins,and SND improves anxiety disorders by regulating glutamate transmitter levels,which may be related to neuroactive ligand-receptor interaction pathways,particularly glutamate receptors.Conclusion:This study shows that SND can improve FS-induced behavioral changes in mice and can modulate hippocampal synapse-associated protein defects,partially reversing glutamate receptor expression through the neuroactive ligand-receptor interaction pathway,and further improved anxiety disorders.At the same time,combined with network pharmacology and molecular docking,the key components,core targets and related pathways of SND are discussed,which shows that the active components of SND play an effective role in anxiety through multi-targets and multi-pathways,which provides a reference for the material basis and mechanism of SND.展开更多
Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil phys...Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.展开更多
Suffering from the inefficient traditional trial-and-error methods and the huge searching space filled by millions of candidates, discovering new perovskite visible photocatalysts with higher hydrogen production rate(...Suffering from the inefficient traditional trial-and-error methods and the huge searching space filled by millions of candidates, discovering new perovskite visible photocatalysts with higher hydrogen production rate(RH_(2)) still remains a challenge in the field of photocatalytic water splitting(PWS). Herein, we established structural-property models targeted to RH_(2) and the proper bandgap(Eg) via machine learning(ML) technology to accelerate the discovery of efficient perovskite photocatalysts for PWS. The Pearson correlation coefficients(R) of leave-one-out cross validation(LOOCV) were adopted to compare the performances of different algorithms including gradient boosting regression(GBR), support vector regression(SVR), backpropagation artificial neural network(BPANN), and random forest(RF). It was found that the BPANN model showed the highest R values from LOOCV and testing data of 0.9897 and 0.9740 for RH_(2),while the GBR model had the best values of 0.9290 and 0.9207 for Eg. Furtherly, 14 potential PWS perovskite candidates were screened out from 30,000 ABO3-type perovskite structures under the criteria of structural stability, Eg, conduction band energy, valence band energy and RH_(2). The average RH_(2) of these14 perovskites is 6.4% higher than the highest value in the training data set. Moreover, the online web servers were developed to share our prediction models, which could be accessible in http://materialsdata-mining.com/ocpmdm/material_api/ahfga3d9puqlknig(E_g prediction) and http://materials-datamining.com/ocpmdm/material_api/i0 ucuyn3 wsd14940(RH_(2) prediction).展开更多
Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots,but the limited variety of stimulus has become a non-negl...Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots,but the limited variety of stimulus has become a non-negligible issue restricting its further development.Herein,we develop a new stimulus of“touch”(i.e.,spatial contact with foreign object)for smart materials and propose a flytrap-inspired touch-responsive polymeric hydrogel based on supersaturated salt solution,exhibiting multiple responsive behaviors in crystallization,heat releasing,and electric signal under touch stimulation.Furthermore,utilizing flytrap-like cascade response strategy,a soft actuator with touch-responsive actuation is fabricated by employing the touch-responsive hydrogel and the thermo-responsive hydrogel.This investigation provides a facile and versatile strategy to design touch-responsive smart materials,enabling a profound potential application in intelligence areas.展开更多
A diffusive-stochastic-viscoelastic model is proposed for the specific adhesion of viscoelastic solids via stochastically formed molecular bonds. In this model, we assumed that molecular level behaviours, including th...A diffusive-stochastic-viscoelastic model is proposed for the specific adhesion of viscoelastic solids via stochastically formed molecular bonds. In this model, we assumed that molecular level behaviours, including the diffusion of mobile adhesion molecules and stochastic reaction between adhesion molecules and binding sites, obey the Markovian stochastic processes, while mesoscopic deformations of the viscoelastic media are governed by continuum mechanics. Through Monte Carlo simulations of this model, we systematically investigated how the competition between time scales of molecular diffusion, reaction, and deformation creep of the solids may influence the lifetime and dynamic strength of the adhesion. We revealed that there exists an optimal characteristic time of molecule diffusion corresponding to the longest lifetime and largest adhesion strength, which is in good agreement with experimental observed characteristic time scales of molecular diffusion in cell membranes. In addition, we identified that the media viscosity can significantly increase the lifetime and dynamic strength, since the deformation creep and stress relaxation can effectively reduce the concentration of interfacial stress and increases the rebinding probability of molecular bonds.展开更多
Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior ...Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.展开更多
Rational design and facile synthesis of non-noble materials as the effective multifunctional electrocatalysts are still challenging. Herein, a self-catalytically grafted growth approach is developed to construct carbo...Rational design and facile synthesis of non-noble materials as the effective multifunctional electrocatalysts are still challenging. Herein, a self-catalytically grafted growth approach is developed to construct carbon hybrid with three-dimensional(3 D) nano-forest architecture via controlled pyrolysis of metalpolymer nanofiber precursor and melamine. The metal-polymer nanofibers act as the matrix, and melamine is used as the initiator for orientated growth of one-dimensional(1 D) N-doped carbon nanotubes(N-CNTs) on carbon nanofibers. The as-prepared CoFe-N-CNTs/CNFs-900 possesses unique structure and component advantages in terms of 3 D structure, special synapse-like structure, porous feature,high-level N doping and bimetallic active components, which endow the material with structural stability, high mass/electron transport ability and large active sur-/interfaces. Benefiting from the integrated effects of all the above factors, CoFe-N-CNTs/CNFs were successfully applied to overall water splitting and Zn-air batteries. It is believed that this integrated design methodology can be extended to prepare other MàNàC materials for energy-related electrochemical reactions.展开更多
Background Subintimal plaque modification(SPM) is often performed to restore antegrade flow and facilitate subsequent lesion recanalization. This study aimed to compare the safety and efficacy of modified SPM with tra...Background Subintimal plaque modification(SPM) is often performed to restore antegrade flow and facilitate subsequent lesion recanalization. This study aimed to compare the safety and efficacy of modified SPM with traditional SPM. Methods A total of 1454 consecutive patients who failed a chronic total occlusion percutaneous coronary intervention(CTO PCI) attempt and underwent SPM from January 2015 to December 2019 at our hospital were reviewed retrospectively. Fifty-four patients who underwent SPM finally were included in this study. We analyzed the outcomes of all the patients, and the primary endpoint was recanalization rate, which was defined as Thrombolysis in Myocardial Infarction(TIMI) grades 2-3 flow on angiography 30 to 90 days post-procedure. Results The baseline characteristics were similar between the two groups. In the follow-up, the recanalization rate was noticeably higher in the modified SPM group compared with the traditional SPM group(90.9% vs. 62.5%, P < 0.05). The proposed strategy in the modified group was more aggressive, including a larger balloon size(1.83 ± 0.30 vs. 2.48 ± 0.26 mm, P < 0.05) and longer subintimal angioplasty(0.59 ± 0.16 vs. 0.92 ± 0.12 mm, P < 0.05). Also, the common use of a Stingray balloon and guide catheter extension resulted in improvement of patients in the modified SMP group(12.5% vs. 100%, P < 0.05). Conclusion Modified SPM, which is associated with a high likelihood of successful recanalization, is an effective and safe CTO PCI bail out strategy.展开更多
Cancer remains a significant global health challenge with limited treatment options beyond systemic therapies,such as chemotherapy,radiotherapy,and molecular targeted therapy.Immunotherapy has emerged as a promising t...Cancer remains a significant global health challenge with limited treatment options beyond systemic therapies,such as chemotherapy,radiotherapy,and molecular targeted therapy.Immunotherapy has emerged as a promising therapeutic modality but the efficacy has plateaued,which therefore provides limited benefits to patients with cancer.Identification of more effective approaches to improve patient outcomes and extend survival are urgently needed.Drug repurposing has emerged as an attractive strategy for drug development and has recently garnered considerable interest.This review comprehensively analyses the efficacy of various repurposed drugs,such as transforming growth factor-beta(TGF-β)inhibitors,metformin,receptor activator of nuclear factor-κB ligand(RANKL)inhibitors,granulocyte macrophage colony-stimulating factor(GM-CSF),thymosinα1(Tα1),aspirin,and bisphosphonate,in tumorigenesis with a specific focus on their impact on tumor immunology and immunotherapy.Additionally,we present a concise overview of the current preclinical and clinical studies investigating the potential therapeutic synergies achieved by combining these agents with immune checkpoint inhibitors.展开更多
The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controlla...The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.展开更多
The thermo-physical properties of nanofluids are highly dependent on the used base fluid.This study explores the influence of the mixing ratio on the thermal conductivity and viscosity of ZnO-CuO/EG(ethylene glycol)-W...The thermo-physical properties of nanofluids are highly dependent on the used base fluid.This study explores the influence of the mixing ratio on the thermal conductivity and viscosity of ZnO-CuO/EG(ethylene glycol)-W(water)hybrid nanofluids with mass concentration and temperatures in the ranges 1-5 wt.%and 25-60C,respectively.The characteristics and stability of these mixtures were estimated by TEM(transmission electron microscopy),visual observation,and absorbance tests.The results show that 120 min of sonication and the addition of PVP(polyvinyl pyrrolidone)surfactant can prevent sedimentation for a period reaching up to 20 days.The increase of EG(ethylene glycol)in the base fluid leads to low thermal conductivity and high viscosity.Thermal conductivity enhancement(TCE)decreases from 21.52%to 11.7%when EG:W is changed from 20:80 to 80:20 at 1 wt.%and 60C.A lower viscosity of the base fluid influences more significantly the TCE of the nanofluid.An Artificial Neural Network(ANN)has also been used to describe the effectiveness of these hybrid nanofluids as heat transfer fluids.The optimal number of layers and neurons in these models have been found to be 1 and 5 for viscosity,and 1 and 7 for thermal conductivity.The corresponding coefficient of determination(R^(2))was 0.9979 and 0.9989,respectively.展开更多
The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can...The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can be well duplicated from the template by the developed methodology.MgSO4 fibers serve as both templates and S dopant,realizing the in-situ S doping into carbon frameworks.The effects of different reaction temperatures on the yield and S doping level of SPCFs are investigated.The S doping can not only significantly enhance the electrical conductivity,but also introduce more defects or disorders.As anode material for lithium ion batteries(LIBs),SPCFs electrode delivers better rate capability than undoped PCFs.And the capacity of SPCFs electrode retains around 90%after 300 cycles at 2 A g1,exhibiting good cycling stability.As the electrocatalysts for fuel cells,the onset potentials of SPCFs obtained at 800 and 900C are concentrated at 0.863 V,and the higher kinetic current densities at 0.4 V of them are larger than that of PCFs,demonstrating the superior electrocatalytic performance.Due to the synergistic effect of abundant pore channels and S doping,SPCFs electrode exhibits superior electrochemical performances as anode for LIBs and elecctrocatalyst for fuel cells,respectively.Additionally,the oriented conversion of asphalt powder into high-performance electrode material in this work provides a new way for the high value application of asphalt.展开更多
目的:观察探讨0.03%他克莫司软膏联合多磺酸粘多糖乳膏治疗面部单纯糠疹的美学效果。方法:选取2019年11月-2022年1月门诊收治的105例面部单纯糠疹患儿为观察对象,通过随机数字法随机分为联合组(n=53)和对照组(n=52),对照组给予多磺酸粘...目的:观察探讨0.03%他克莫司软膏联合多磺酸粘多糖乳膏治疗面部单纯糠疹的美学效果。方法:选取2019年11月-2022年1月门诊收治的105例面部单纯糠疹患儿为观察对象,通过随机数字法随机分为联合组(n=53)和对照组(n=52),对照组给予多磺酸粘多糖乳膏治疗,联合组在对照组基础上加用0.03%他克莫司软膏治疗,比较两组治疗后的临床疗效、症状体征评分、皮肤生理功能指标[角质层含水量(Water content of stratum corneum,WCSC)、皮肤油脂(Skin sebum,SC)、经表皮水分流失(Transepidermal water loss,TEWL)]、复发情况、不良反应及美学效果满意度。结果:治疗4周后,联合组总有效率为88.68%,对照组为71.15%,差异有统计学意义(P<0.05)。治疗前两组患儿各项症状体征评分差异均无统计学意义(P>0.05);治疗4周后,两组患儿鳞屑、瘙痒、色素减退、皮损面积及皮损数量评分均较治疗前显著降低(P<0.05),且联合组各症状体征评分明显低于对照组(P<0.05);治疗前两组患儿皮肤生理功能指标差异均无统计学意义(P>0.05);治疗4周后,两组患儿WCSC和SC均显著升高(P<0.05),TEWL均显著降低(P<0.05),且联合组改善优于对照组(P<0.05);结束治疗随访4周,联合组患儿复发率(14.89%)低于对照组(27.03%),差异无统计学意义(P>0.05);治疗期间,两组患儿均未出现明显不良反应;联合组患儿美学效果总满意度(96.23%)显著高于对照组(82.69%)(P<0.05)。结论:0.03%他克莫司软膏联合多磺酸粘多糖乳膏治疗面部单纯糠疹疗效显著,可有效改善患儿皮损症状和皮肤生理功能,能有效预防复发,提高美学效果,且安全性好,值得临床推广应用。展开更多
Dear Editor,Although the incidence of prostate cancer(PCa) has decreased in recent decades in Western countries, it has gradually increased in China due to the increasingly longer life expectancy and more popular west...Dear Editor,Although the incidence of prostate cancer(PCa) has decreased in recent decades in Western countries, it has gradually increased in China due to the increasingly longer life expectancy and more popular westernized diet[1].展开更多
Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorpti...Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorptive root traits. Seven functional traits of the absorptive roots of 240 individuals of 52 species, soil properties and air temperature were measured along an elevational gradient on Mt. Fanjingshan, Tongren City, Guizhou, and then the direct and indirect effects of these controls on species distribution were detected.Results: Absorptive roots adapted to air temperature with two strategies. The first strategy was positively associated with the specific root area(SRA) and specific root length(SRL) and was negatively associated with the root tissue density(RTD), representing the classic root economics spectrum(RES). The second strategy was represented by the trade-off between root diameter, mycorrhizal fungi colonization(MF) and SRL, representing the collaboration gradient with “do it yourself” resource uptake ranging from “outsourcing” to mycorrhizal resource uptake. Air temperature regulated species distribution in six ways: directly reducing species importance value;indirectly increasing the species importance value by reducing soil nitrogen content or increasing soil pH by reducing soil moisture inducing absorptive roots to change from “do it yourself” resource absorption to “outsourcing” resource absorption;indirectly decreasing the species importance value by decreasing soil moisture to change from“outsourcing”resource absorption to “do it yourself” resource absorption;indirectly increasing the species importance value with increasing soil pH by reducing soil moisture resulting in absorptive root traits turning into nutrient foraging traits;and indirectly decreasing the species importance value by promoting absorptive root traits to nutrient conservation traits.Conclusions: Absorptive root traits play a crucial role in the regulation of species distribution through multiapproaches of air temperature.展开更多
基金support from the National Natural Science Foundation of China(52077096)
文摘Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.
基金supported by the National Natural Science Foundation of China(No.32260292,32060277)National Key Research and Development Program of China(No.2020YFC1522200)+2 种基金Shanxi Provincial Basic Research Program of China(No.202303021212060)Shanxi Provincial Cultural Relics Technology Program of China(No.2023KT15)The Local Project Guided by the Central Government of Gansu Province(No.YDZX20216200001728).
文摘Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.
基金financially supported by the Shaanxi Province Key Project for Social Development(No.2022SF-205).
文摘Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic effects are unknown.In this study,network pharmacology,molecular docking research and experimental verification methods were used to preliminarily explore the bioactive compounds and potential target mechanisms of SND anxiolytic.Methods:The active components and corresponding targets of SND were collected by TCMSP.GeneCards,OMIM,PharmGkb,TTD and Drugbank were used to search for the targets of anxiety disorders.The core target of SND in the treatment of anxiety was screened by PPI.R language was used to analyze the intersection targets of SND in the treatment of anxiety disorders by GO and KEGG enrichment analysis.AutoDock Vina was used for molecular docking,and Discovery Studio was used for visual conformation analysis after docking.The anti-anxiety effect and molecular mechanism of SND were studied by in vivo experiment.Results:Based on network pharmacological analysis,we obtained 112 active ingredients and 350 effective targets related to anxiety from SND.In PPI analysis,26 targets such as STAT3,MAPK3,MAPK1,MAPK14,SRC,HSP90AA1,TP53 and PIK3CA were identified as core targets.GO and KEGG analysis showed that the anxiolytic mechanism of SND may be related to the neuroactive ligand-receptor interaction pathway and inflammatory pathway.Molecular docking showed that quercetin,naringenin,licochalcone A had high affinity with JAK2,MAPK14 and MAPK3.Animal experiments have shown that SND reverses the upregulation of GluN2B(NMDAR)and GluA1(AMPAR)proteins,and SND improves anxiety disorders by regulating glutamate transmitter levels,which may be related to neuroactive ligand-receptor interaction pathways,particularly glutamate receptors.Conclusion:This study shows that SND can improve FS-induced behavioral changes in mice and can modulate hippocampal synapse-associated protein defects,partially reversing glutamate receptor expression through the neuroactive ligand-receptor interaction pathway,and further improved anxiety disorders.At the same time,combined with network pharmacology and molecular docking,the key components,core targets and related pathways of SND are discussed,which shows that the active components of SND play an effective role in anxiety through multi-targets and multi-pathways,which provides a reference for the material basis and mechanism of SND.
基金financially supported by the National Natural Science Foundation of China (41630858)
文摘Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.
基金Financial support to this work from the National Key Research and Development Program of China (No. 2016YFB0700504)the Science and Technology Commission of Shanghai Municipality (18520723500) is gratefully acknowledged。
文摘Suffering from the inefficient traditional trial-and-error methods and the huge searching space filled by millions of candidates, discovering new perovskite visible photocatalysts with higher hydrogen production rate(RH_(2)) still remains a challenge in the field of photocatalytic water splitting(PWS). Herein, we established structural-property models targeted to RH_(2) and the proper bandgap(Eg) via machine learning(ML) technology to accelerate the discovery of efficient perovskite photocatalysts for PWS. The Pearson correlation coefficients(R) of leave-one-out cross validation(LOOCV) were adopted to compare the performances of different algorithms including gradient boosting regression(GBR), support vector regression(SVR), backpropagation artificial neural network(BPANN), and random forest(RF). It was found that the BPANN model showed the highest R values from LOOCV and testing data of 0.9897 and 0.9740 for RH_(2),while the GBR model had the best values of 0.9290 and 0.9207 for Eg. Furtherly, 14 potential PWS perovskite candidates were screened out from 30,000 ABO3-type perovskite structures under the criteria of structural stability, Eg, conduction band energy, valence band energy and RH_(2). The average RH_(2) of these14 perovskites is 6.4% higher than the highest value in the training data set. Moreover, the online web servers were developed to share our prediction models, which could be accessible in http://materialsdata-mining.com/ocpmdm/material_api/ahfga3d9puqlknig(E_g prediction) and http://materials-datamining.com/ocpmdm/material_api/i0 ucuyn3 wsd14940(RH_(2) prediction).
基金supported by the National Natural Science Foundation of China(52103152)China Postdoctoral Science Foundation(2021M690157)Ningbo Natural Science Foundation(2121J206).
文摘Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots,but the limited variety of stimulus has become a non-negligible issue restricting its further development.Herein,we develop a new stimulus of“touch”(i.e.,spatial contact with foreign object)for smart materials and propose a flytrap-inspired touch-responsive polymeric hydrogel based on supersaturated salt solution,exhibiting multiple responsive behaviors in crystallization,heat releasing,and electric signal under touch stimulation.Furthermore,utilizing flytrap-like cascade response strategy,a soft actuator with touch-responsive actuation is fabricated by employing the touch-responsive hydrogel and the thermo-responsive hydrogel.This investigation provides a facile and versatile strategy to design touch-responsive smart materials,enabling a profound potential application in intelligence areas.
基金the National Natural Science Foundation of China (Grants 11472119 and 11602099)the Fundamental Research Funds for the Central Universities (Grant lzujbky-2017-ot11)the 111 Project (Grant B14044).
文摘A diffusive-stochastic-viscoelastic model is proposed for the specific adhesion of viscoelastic solids via stochastically formed molecular bonds. In this model, we assumed that molecular level behaviours, including the diffusion of mobile adhesion molecules and stochastic reaction between adhesion molecules and binding sites, obey the Markovian stochastic processes, while mesoscopic deformations of the viscoelastic media are governed by continuum mechanics. Through Monte Carlo simulations of this model, we systematically investigated how the competition between time scales of molecular diffusion, reaction, and deformation creep of the solids may influence the lifetime and dynamic strength of the adhesion. We revealed that there exists an optimal characteristic time of molecule diffusion corresponding to the longest lifetime and largest adhesion strength, which is in good agreement with experimental observed characteristic time scales of molecular diffusion in cell membranes. In addition, we identified that the media viscosity can significantly increase the lifetime and dynamic strength, since the deformation creep and stress relaxation can effectively reduce the concentration of interfacial stress and increases the rebinding probability of molecular bonds.
基金the Baoshan Iron and Steel Group for the financial support
文摘Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.
基金supported by the National Natural Science Foundation of China (21872008)the Shandong Province Natural Science Foundation (ZR2019BEM033)。
文摘Rational design and facile synthesis of non-noble materials as the effective multifunctional electrocatalysts are still challenging. Herein, a self-catalytically grafted growth approach is developed to construct carbon hybrid with three-dimensional(3 D) nano-forest architecture via controlled pyrolysis of metalpolymer nanofiber precursor and melamine. The metal-polymer nanofibers act as the matrix, and melamine is used as the initiator for orientated growth of one-dimensional(1 D) N-doped carbon nanotubes(N-CNTs) on carbon nanofibers. The as-prepared CoFe-N-CNTs/CNFs-900 possesses unique structure and component advantages in terms of 3 D structure, special synapse-like structure, porous feature,high-level N doping and bimetallic active components, which endow the material with structural stability, high mass/electron transport ability and large active sur-/interfaces. Benefiting from the integrated effects of all the above factors, CoFe-N-CNTs/CNFs were successfully applied to overall water splitting and Zn-air batteries. It is believed that this integrated design methodology can be extended to prepare other MàNàC materials for energy-related electrochemical reactions.
文摘Background Subintimal plaque modification(SPM) is often performed to restore antegrade flow and facilitate subsequent lesion recanalization. This study aimed to compare the safety and efficacy of modified SPM with traditional SPM. Methods A total of 1454 consecutive patients who failed a chronic total occlusion percutaneous coronary intervention(CTO PCI) attempt and underwent SPM from January 2015 to December 2019 at our hospital were reviewed retrospectively. Fifty-four patients who underwent SPM finally were included in this study. We analyzed the outcomes of all the patients, and the primary endpoint was recanalization rate, which was defined as Thrombolysis in Myocardial Infarction(TIMI) grades 2-3 flow on angiography 30 to 90 days post-procedure. Results The baseline characteristics were similar between the two groups. In the follow-up, the recanalization rate was noticeably higher in the modified SPM group compared with the traditional SPM group(90.9% vs. 62.5%, P < 0.05). The proposed strategy in the modified group was more aggressive, including a larger balloon size(1.83 ± 0.30 vs. 2.48 ± 0.26 mm, P < 0.05) and longer subintimal angioplasty(0.59 ± 0.16 vs. 0.92 ± 0.12 mm, P < 0.05). Also, the common use of a Stingray balloon and guide catheter extension resulted in improvement of patients in the modified SMP group(12.5% vs. 100%, P < 0.05). Conclusion Modified SPM, which is associated with a high likelihood of successful recanalization, is an effective and safe CTO PCI bail out strategy.
基金supported by grants from the National Natural Science Foundation of China(Grant No.81772830)。
文摘Cancer remains a significant global health challenge with limited treatment options beyond systemic therapies,such as chemotherapy,radiotherapy,and molecular targeted therapy.Immunotherapy has emerged as a promising therapeutic modality but the efficacy has plateaued,which therefore provides limited benefits to patients with cancer.Identification of more effective approaches to improve patient outcomes and extend survival are urgently needed.Drug repurposing has emerged as an attractive strategy for drug development and has recently garnered considerable interest.This review comprehensively analyses the efficacy of various repurposed drugs,such as transforming growth factor-beta(TGF-β)inhibitors,metformin,receptor activator of nuclear factor-κB ligand(RANKL)inhibitors,granulocyte macrophage colony-stimulating factor(GM-CSF),thymosinα1(Tα1),aspirin,and bisphosphonate,in tumorigenesis with a specific focus on their impact on tumor immunology and immunotherapy.Additionally,we present a concise overview of the current preclinical and clinical studies investigating the potential therapeutic synergies achieved by combining these agents with immune checkpoint inhibitors.
基金supported by the National Natural Science Foundation of China (11032006, 11072094, and 11121202)the PhD Program Foundation of the Ministry of Education of China (20100211110022)+1 种基金New Century Excellent Talents in University (NCET-10-0445)supported by the National Science Foundation through grant CMMI-1028530 to Brown University
文摘The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.
基金This project is supported by Yulingn Zhai and the National Natural Science Foundation of China(No.51806090)the Basic Research Project of Yunnan Province(No.202001AT070081).
文摘The thermo-physical properties of nanofluids are highly dependent on the used base fluid.This study explores the influence of the mixing ratio on the thermal conductivity and viscosity of ZnO-CuO/EG(ethylene glycol)-W(water)hybrid nanofluids with mass concentration and temperatures in the ranges 1-5 wt.%and 25-60C,respectively.The characteristics and stability of these mixtures were estimated by TEM(transmission electron microscopy),visual observation,and absorbance tests.The results show that 120 min of sonication and the addition of PVP(polyvinyl pyrrolidone)surfactant can prevent sedimentation for a period reaching up to 20 days.The increase of EG(ethylene glycol)in the base fluid leads to low thermal conductivity and high viscosity.Thermal conductivity enhancement(TCE)decreases from 21.52%to 11.7%when EG:W is changed from 20:80 to 80:20 at 1 wt.%and 60C.A lower viscosity of the base fluid influences more significantly the TCE of the nanofluid.An Artificial Neural Network(ANN)has also been used to describe the effectiveness of these hybrid nanofluids as heat transfer fluids.The optimal number of layers and neurons in these models have been found to be 1 and 5 for viscosity,and 1 and 7 for thermal conductivity.The corresponding coefficient of determination(R^(2))was 0.9979 and 0.9989,respectively.
文摘The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can be well duplicated from the template by the developed methodology.MgSO4 fibers serve as both templates and S dopant,realizing the in-situ S doping into carbon frameworks.The effects of different reaction temperatures on the yield and S doping level of SPCFs are investigated.The S doping can not only significantly enhance the electrical conductivity,but also introduce more defects or disorders.As anode material for lithium ion batteries(LIBs),SPCFs electrode delivers better rate capability than undoped PCFs.And the capacity of SPCFs electrode retains around 90%after 300 cycles at 2 A g1,exhibiting good cycling stability.As the electrocatalysts for fuel cells,the onset potentials of SPCFs obtained at 800 and 900C are concentrated at 0.863 V,and the higher kinetic current densities at 0.4 V of them are larger than that of PCFs,demonstrating the superior electrocatalytic performance.Due to the synergistic effect of abundant pore channels and S doping,SPCFs electrode exhibits superior electrochemical performances as anode for LIBs and elecctrocatalyst for fuel cells,respectively.Additionally,the oriented conversion of asphalt powder into high-performance electrode material in this work provides a new way for the high value application of asphalt.
文摘目的:观察探讨0.03%他克莫司软膏联合多磺酸粘多糖乳膏治疗面部单纯糠疹的美学效果。方法:选取2019年11月-2022年1月门诊收治的105例面部单纯糠疹患儿为观察对象,通过随机数字法随机分为联合组(n=53)和对照组(n=52),对照组给予多磺酸粘多糖乳膏治疗,联合组在对照组基础上加用0.03%他克莫司软膏治疗,比较两组治疗后的临床疗效、症状体征评分、皮肤生理功能指标[角质层含水量(Water content of stratum corneum,WCSC)、皮肤油脂(Skin sebum,SC)、经表皮水分流失(Transepidermal water loss,TEWL)]、复发情况、不良反应及美学效果满意度。结果:治疗4周后,联合组总有效率为88.68%,对照组为71.15%,差异有统计学意义(P<0.05)。治疗前两组患儿各项症状体征评分差异均无统计学意义(P>0.05);治疗4周后,两组患儿鳞屑、瘙痒、色素减退、皮损面积及皮损数量评分均较治疗前显著降低(P<0.05),且联合组各症状体征评分明显低于对照组(P<0.05);治疗前两组患儿皮肤生理功能指标差异均无统计学意义(P>0.05);治疗4周后,两组患儿WCSC和SC均显著升高(P<0.05),TEWL均显著降低(P<0.05),且联合组改善优于对照组(P<0.05);结束治疗随访4周,联合组患儿复发率(14.89%)低于对照组(27.03%),差异无统计学意义(P>0.05);治疗期间,两组患儿均未出现明显不良反应;联合组患儿美学效果总满意度(96.23%)显著高于对照组(82.69%)(P<0.05)。结论:0.03%他克莫司软膏联合多磺酸粘多糖乳膏治疗面部单纯糠疹疗效显著,可有效改善患儿皮损症状和皮肤生理功能,能有效预防复发,提高美学效果,且安全性好,值得临床推广应用。
基金supported by the National Natural Science Foundation of China (81902574)the Shanghai Basic Research Program (19JC1411600)+1 种基金the Shanghai Natural Science Foundation (21ZR1414500)the Shanghai Sailing Program (19YF1409800)。
文摘Dear Editor,Although the incidence of prostate cancer(PCa) has decreased in recent decades in Western countries, it has gradually increased in China due to the increasingly longer life expectancy and more popular westernized diet[1].
基金financially supported by the National Nature Science Foundation of China (No.32001248)the Characteristic Field Project of Department of Education of Guizhou Province (NO.[2019]075)+3 种基金PhD Research Start-up Foundation of Tongren University (No.trxyDH1807)Guizhou Forestry Research Project (No.[2019]014)the Science and Technology Plan Project of Guizhou Province (NO.[2019]1312,NO.[2022]general-556)the Key Laboratory Project of Guizhou Province (No.[2020]2003)
文摘Background: Air temperature affects absorptive root traits, which are closely related to species distribution.However, it is still unclear how air temperature regulates species distribution through changes in absorptive root traits. Seven functional traits of the absorptive roots of 240 individuals of 52 species, soil properties and air temperature were measured along an elevational gradient on Mt. Fanjingshan, Tongren City, Guizhou, and then the direct and indirect effects of these controls on species distribution were detected.Results: Absorptive roots adapted to air temperature with two strategies. The first strategy was positively associated with the specific root area(SRA) and specific root length(SRL) and was negatively associated with the root tissue density(RTD), representing the classic root economics spectrum(RES). The second strategy was represented by the trade-off between root diameter, mycorrhizal fungi colonization(MF) and SRL, representing the collaboration gradient with “do it yourself” resource uptake ranging from “outsourcing” to mycorrhizal resource uptake. Air temperature regulated species distribution in six ways: directly reducing species importance value;indirectly increasing the species importance value by reducing soil nitrogen content or increasing soil pH by reducing soil moisture inducing absorptive roots to change from “do it yourself” resource absorption to “outsourcing” resource absorption;indirectly decreasing the species importance value by decreasing soil moisture to change from“outsourcing”resource absorption to “do it yourself” resource absorption;indirectly increasing the species importance value with increasing soil pH by reducing soil moisture resulting in absorptive root traits turning into nutrient foraging traits;and indirectly decreasing the species importance value by promoting absorptive root traits to nutrient conservation traits.Conclusions: Absorptive root traits play a crucial role in the regulation of species distribution through multiapproaches of air temperature.