Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra...Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).展开更多
High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is ...High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.展开更多
[Objectives] This study was conducted to expand the insect resistance spectrum of tea saponin, and its control effect on Cylas formicarius and the potential as an insecticide for pest control were explored. [Methods] ...[Objectives] This study was conducted to expand the insect resistance spectrum of tea saponin, and its control effect on Cylas formicarius and the potential as an insecticide for pest control were explored. [Methods] The olfactory avoidance rate of C. formicarius to tea saponin aqueous solution was determined by Y-type olfactometer;the feeding avoidance rate of C. formicarius to tea saponin was determined by the selective method;the antifeedant rate of C. formicarius to tea saponin was determined by non-selective method;and the development duration and mortality of C. formicarius under the influence of tea saponin were determined by artificial feeding method. [Results] C. formicarius had no significant olfactory tendency to every concentration of tea saponin, and the olfactory avoidance rate of 20.0% tea saponin aqueous solution was only 9.14%. Tea saponin had a feeding avoidance effect on C. formicarius, and the avoidance rate increased with the increase of tea saponin concentration. At 6 h, the feeding avoidance rates of 0.5%, 1.0%, 5.0%, 10.0% and 20.0% tea saponin on C. formicarius were 58.14%, 77.77%, 88.23%, 95.00% and 97.65 %, respectively;and the feeding avoidance effect at 6 h was significant, and the feeding avoidance rate was higher than that of 1 h. Tea saponin had a significant antifeedant effect on C. formicarius, and the longer the feeding time, the higher the antifeedant rate. At 72 h, the antifeedant rates of 0.5%, 1.0%, 5.0%, 10.0 % and 20.0% tea saponin to C. formicarius were 63.01%, 67.54%, 97.14 %, 96.42% and 98.57%, respectively. The larval development duration of C. formicarius was shortened with the increase of tea saponin concentration, and the larval death occurred. The development duration of larvae under the influence of 1.0% tea saponin was the shortest, which was 4.01 d shorter than that of the control, and the mortality was the highest, which was 26.65%. [Conclusions] Tea saponin had neither olfactory avoidance effect nor olfactory attracting effect to C. formicarius, but had obvious feeding avoidance effect and strong antifeedant effect. Tea saponin can shorten the development duration of the larvae of C. formicarius and cause the death of the larvae.展开更多
Recent advances in information technology have led to profound changes in global manufacturing.This study focuses on the theoretical and practical challenges and oppor-tunities arising from the Internet of Things(IoT)...Recent advances in information technology have led to profound changes in global manufacturing.This study focuses on the theoretical and practical challenges and oppor-tunities arising from the Internet of Things(IoT)as it enables new ways of supply-chain operations partially based on big-data analytics and changes in the nature of industries.We intend to reveal the acting principle of the IoT and its implications for big-data ana-lytics on the supply chain operational performance,particularly with regard to dynamics of operational coordination and optimization for supply chains by leveraging big data ob-tained from smart connected products(SCPs),and the governance mechanism of big-data sharing.Building on literature closely related to our focal topic,we analyze and deduce the substantial influence of disruptive technologies and emerging business models including the IoT,big data analytics and SCPs on many aspects of supply chains,such as consumers value judgment,products development,resources allocation,operations optimization,revenue management and network governance.Furthermore,we propose several research directions and corresponding research schemes in the new situations.This study aims to promote future researches in the field of big data-driven supply chain management with the IoT,help firms improve data-driven operational decisions,and provide government a reference to advance and regulate the development of the IoT and big data industry.展开更多
基金supported by the STI 2030-Major Projects,No. 2021ZD0200500 (to XS)。
文摘Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).
基金Key-Area Research and Development Program of Guangdong Province(Nos.2020B010172001,2020B010174004)GDAS’Project of Science and Technology Development(No.2018GDASCX-0112)+3 种基金Science and Technology Program of Guangzhou(No.2019050001)National Key Research and Development Program of China(No.2017YFB0404100)National Natural Science Foundation of China(Grant No.11804103)Guangdong Natural Science Foundation for Distinguished Young Scholars(Grant No.2018B030306048).
文摘High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.
基金Supported by National Modern Agricultural Industry Technology System Guangxi Industry Potato Innovation Team(nycytxgxcxtd-11-01)Guangxi Science and Technology Planning Project(GK AB16380046,GK AB18221101)
文摘[Objectives] This study was conducted to expand the insect resistance spectrum of tea saponin, and its control effect on Cylas formicarius and the potential as an insecticide for pest control were explored. [Methods] The olfactory avoidance rate of C. formicarius to tea saponin aqueous solution was determined by Y-type olfactometer;the feeding avoidance rate of C. formicarius to tea saponin was determined by the selective method;the antifeedant rate of C. formicarius to tea saponin was determined by non-selective method;and the development duration and mortality of C. formicarius under the influence of tea saponin were determined by artificial feeding method. [Results] C. formicarius had no significant olfactory tendency to every concentration of tea saponin, and the olfactory avoidance rate of 20.0% tea saponin aqueous solution was only 9.14%. Tea saponin had a feeding avoidance effect on C. formicarius, and the avoidance rate increased with the increase of tea saponin concentration. At 6 h, the feeding avoidance rates of 0.5%, 1.0%, 5.0%, 10.0% and 20.0% tea saponin on C. formicarius were 58.14%, 77.77%, 88.23%, 95.00% and 97.65 %, respectively;and the feeding avoidance effect at 6 h was significant, and the feeding avoidance rate was higher than that of 1 h. Tea saponin had a significant antifeedant effect on C. formicarius, and the longer the feeding time, the higher the antifeedant rate. At 72 h, the antifeedant rates of 0.5%, 1.0%, 5.0%, 10.0 % and 20.0% tea saponin to C. formicarius were 63.01%, 67.54%, 97.14 %, 96.42% and 98.57%, respectively. The larval development duration of C. formicarius was shortened with the increase of tea saponin concentration, and the larval death occurred. The development duration of larvae under the influence of 1.0% tea saponin was the shortest, which was 4.01 d shorter than that of the control, and the mortality was the highest, which was 26.65%. [Conclusions] Tea saponin had neither olfactory avoidance effect nor olfactory attracting effect to C. formicarius, but had obvious feeding avoidance effect and strong antifeedant effect. Tea saponin can shorten the development duration of the larvae of C. formicarius and cause the death of the larvae.
基金This research is partially supported by National Natural Science Foundation of China Grants(Nos.91646118,71501108,71602142,71701144).
文摘Recent advances in information technology have led to profound changes in global manufacturing.This study focuses on the theoretical and practical challenges and oppor-tunities arising from the Internet of Things(IoT)as it enables new ways of supply-chain operations partially based on big-data analytics and changes in the nature of industries.We intend to reveal the acting principle of the IoT and its implications for big-data ana-lytics on the supply chain operational performance,particularly with regard to dynamics of operational coordination and optimization for supply chains by leveraging big data ob-tained from smart connected products(SCPs),and the governance mechanism of big-data sharing.Building on literature closely related to our focal topic,we analyze and deduce the substantial influence of disruptive technologies and emerging business models including the IoT,big data analytics and SCPs on many aspects of supply chains,such as consumers value judgment,products development,resources allocation,operations optimization,revenue management and network governance.Furthermore,we propose several research directions and corresponding research schemes in the new situations.This study aims to promote future researches in the field of big data-driven supply chain management with the IoT,help firms improve data-driven operational decisions,and provide government a reference to advance and regulate the development of the IoT and big data industry.