Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
In the process of electrocatalytic water splitting, the management of gaseous products is an important task. Timely detachment of gaseous products from the electrode surface and the electrolyte is beneficial to the re...In the process of electrocatalytic water splitting, the management of gaseous products is an important task. Timely detachment of gaseous products from the electrode surface and the electrolyte is beneficial to the reduction of energy consumption of the electrolytic cell. In the existing industrial electrolytic cells, the circulating pump drives the electrolyte flowing to discharge the gaseous products. Up to now, several much more advanced strategies have been explored to deal with the negative effects of bubbles. In this review, we summarized various strategies for bubble detachment, including electrode design, external field imposing and system upgrading. We also elaborated the principle, functional features, practicability, advantages and limitations of each method. Finally, challenges and perspectives are also provided for the further development of advanced bubbles detachment strategies for efficient hydrogen evolution.展开更多
The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure...The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields.展开更多
Doping foreign metal atoms into the substrate of transition metal dichalcogenides(TMDs)enables the formation of diverse atomic structure configurations,including isolated atoms,chains,and clusters.Therefore,it is very...Doping foreign metal atoms into the substrate of transition metal dichalcogenides(TMDs)enables the formation of diverse atomic structure configurations,including isolated atoms,chains,and clusters.Therefore,it is very important to reasonably control the atomic structure and determine the structure-activity relationship between the atomic configurations and the hydrogen evolution reaction(HER)performance.Although numerous studies have indicated that doping can yield diverse atomic structure configurations,there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance.Here,diverse atomic structure configurations of adsorptive doping,substitutional doping,and TMDs alloys are summarized.The structure-activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory(DFT)calculations.These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER.Finally,we have summarized the current challenges and future opportunities,offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.展开更多
Grain boundary(GB),as a kind of lattice defect,widely exists in two-dimensional transition metal dichalcogenides(2D TMDs),which has complex and diverse influences on the physical/chemical properties of 2D TMDs.GBs are...Grain boundary(GB),as a kind of lattice defect,widely exists in two-dimensional transition metal dichalcogenides(2D TMDs),which has complex and diverse influences on the physical/chemical properties of 2D TMDs.GBs are universally considered to be a double-edged sword,although some electrical and mechanical properties of 2D TMDs would be adversely affected leading to the reduced overall quality,certain structure-oriented applications could be realized based on its unique properties.In this review,we first detailed the atomic structure characteristics of GBs and the corresponding techniques,then we systematically summarized the methods of introducing GBs into 2D TMDs.Next,we expounded unique electrical,mechanical,and chemical properties of the GBs in 2D TMDs and clarified its internal relationship with the atomic structure.Moreover,the application of GB structure in hydrogen evolution reaction(HER)is also discussed.In the end,we make a conclusion and put forward outlooks,hoping to further promote the basic research of GB and boost the wide application of 2D TMDs.展开更多
Photothermal effect has been widely employed in the H2 evolution process at the advantage of using clean energy sources to produce another one of higher benefits.The solar-to-heat conversion have various forms and hea...Photothermal effect has been widely employed in the H2 evolution process at the advantage of using clean energy sources to produce another one of higher benefits.The solar-to-heat conversion have various forms and heat can facilitate reactions in a variety of dimensions.Hence,summarizing the sources and destinations of heat is important for constructing hydrogen production systems of higher efficiency.This view mainly focuses on the recent state-of-art progress of hydrogen evolution reaction(HER)based on photothermal effect.First,we introduce the main pathways of photothermal conversions applied in H2 evolution.Then,the functions of the photothermal effect are clearly summarized.Furthermore,we go beyond the catalytic reaction and introduce a method to improve the catalytic system by changing the catalytic bulk phase through thermal means.In the end,we sort out the challenges and outlook to offer some noble insights for this promising area.展开更多
High-efficiency hydrogen production through photoelectrochemical(PEC)water splitting has emerged as a promising solution to address current global energy challenges.Ⅲ-nitride semiconductor photoelectrodes with nanost...High-efficiency hydrogen production through photoelectrochemical(PEC)water splitting has emerged as a promising solution to address current global energy challenges.Ⅲ-nitride semiconductor photoelectrodes with nanostructures have demonstrated great potential in the near future due to their high light absorption,tunable direct band gap,and strong physicochemical stability.However,several issues,including surface trapping centers,surface Fermi level pinning,and surface band bending,need to be addressed.In this work,enhanced photovoltaic properties have been achieved using gallium nitride(GaN)nanowires(NWs)photoelectrodes by adopting an alkaline solution surface treatment method to reduce the surface states.It was found that surface oxides on NWs can be removed by an alkaline solution treatment without changing the surface morphology through X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM)and other characterization methods.These findings provide new insights to the development of high-efficiency photoelectrodes for new energy source applications.展开更多
Artificial Z(S)-scheme photocatalytic water splitting systems have attracted extensive attention due to their advantages such as wide light absorption range,high charge separation efficiency and strong carrier redox a...Artificial Z(S)-scheme photocatalytic water splitting systems have attracted extensive attention due to their advantages such as wide light absorption range,high charge separation efficiency and strong carrier redox ability.However,it is still challenging to design and prepare Z(S)-scheme photocatalysts with low-cost and highly stability for efficiently photocatalytic overall water splitting using solar energy.This review mainly introduces various strategies to improve the photocatalytic water splitting performance of Z(S)-scheme systems.These strategies mainly focus on enhancing or extending the range of light absorption,promoting charge separation,and enhancing surface redox reaction in Z(S)-scheme systems.Finally,the main challenges of Z(S)-scheme photocatalytic water splitting systems and their future development directions are pointed out.This review would be beneficial to understanding the challenges and opportunities faced by the research field of Z(S)-scheme photocatalytic systems,and has important guiding significance for the development and utilization of high-performance Z(S)-scheme photocatalytic reaction system in the future.展开更多
Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional ca...Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.展开更多
The physicochemical properties of transition metal dichalcogenides(TMDs)are highly related to their structures and usually stable in air.However,under certain conditions they could be transformed into different struct...The physicochemical properties of transition metal dichalcogenides(TMDs)are highly related to their structures and usually stable in air.However,under certain conditions they could be transformed into different structures due to oxidation.Considering this,various materials with fascinating structures have been explored by oxidation strategies,which possess novel properties and great potential in various applications such as solar batteries,hydrogen evolution reaction(HER)catalysts,and field effect transistors(FET).In this review,we systematically summarize the atomic structures of TMD oxidized variants and the corresponding fabrication approaches.Utilizing various characterization methods,the chemical components of TMD oxidized variants are illustrated.Furthermore,we expound the promising applications of the oxidized variants.This review is expected to provide a new insight for preparing precise materials at the atomic level through corresponding oxidation strategies.展开更多
The weak van der Waals gap endows two dimensional transition metal dichalcogenides(2D TMDs)with the potential to realize guest intercalation and host exfoliation.Intriguingly,the liquid intercalation and exfoliation i...The weak van der Waals gap endows two dimensional transition metal dichalcogenides(2D TMDs)with the potential to realize guest intercalation and host exfoliation.Intriguingly,the liquid intercalation and exfoliation is a facile,low-cost,versatile and scalable strategy to modulate the structure and physiochemical property of TMDs via introducing foreign species into interlayer.In this review,firstly,we briefly introduce the resultant hybrid superlattice and disperse nanosheets with tailored properties fabricated via liquid intercalation and exfoliation.Subsequently,we systematically analyze the intercalation phenomenon and limitations of various intercalants in chemical or electrochemical methods.Afterwards,we intensely discuss diverse functionalities of resultant materials,focusing on their potential applications in energy conversion,energy storage,water purification,electronics,thermoelectrics and superconductor.Finally,we highlight the challenges and outlooks for precise and mass production of 2D TMDs-based materials via liquid intercalation and exfoliation.This review enriches the overview of liquid intercalation and exfoliation strategy,and paves the path for relevant high-performance devices.展开更多
Environmental pollution and global warming caused by fossil fuels have become increasingly serious issues. Therefore, it is urgent to explore novel strategies to obtain sustainable, renewable and clean energy. Fortuna...Environmental pollution and global warming caused by fossil fuels have become increasingly serious issues. Therefore, it is urgent to explore novel strategies to obtain sustainable, renewable and clean energy. Fortunately, ambient energy harvesting technologies, which are receiving increasing attention, provide an optimal solution. Additionally, the investigation of two-dimensional (2D) materials represented by transition metal dichalcogenides (TMDs) significantly facilitates the advancement of ambient energy harvesting technologies due to their unique properties, enabling the application of ambient energy harvesting. Herein, we summarized recent advances in the application of TMDs in thermal energy harvesting, osmotic energy harvesting, mechanical energy harvesting, water energy harvesting and radiofrequency energy harvesting respectively. In the meanwhile, we listed some representative structure and device optimization strategies for enhancing the energy conversion performance of these ambient energy harvesters, aiming to provide valuable insights for future investigations towards further optimization. Finally, we highlight the pressing issues currently faced in the application of the TMDs ambient energy harvesting technologies and propose some potential solutions to these challenges. We aimed to provide a comprehensive review in the applications of the energy harvesting technologies, in order to provide innovative insights for optimizing existing TMDs-based technologies.展开更多
Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))an...Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))and unraveling its structure−activity relationship.By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering,we successfully designed and synthesized MoS_(x)nanowire networks derived from[Mo_(3)S_(13)]^(2−) clusters via evaporationinduced self-assembly,which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials.MoS_(x) nanowire networks electrode yields a current density of 100 mA·cm^(−2) at 142 mV in 0.5 M H_(2)SO_(4).This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.展开更多
Vertically stacking two-dimensional(2D)materials with small azimuthal deviation or lattice mismatch generate distinctive global structural periodicity and symmetry,revealed as the moirésuperlattices(MSLs).Manipul...Vertically stacking two-dimensional(2D)materials with small azimuthal deviation or lattice mismatch generate distinctive global structural periodicity and symmetry,revealed as the moirésuperlattices(MSLs).Manipulating the interlayer twist angle enables the modification of the electronic structure of 2D materials to explore the advanced applications.Although extraordinary progress has been achieved in the unique structure and emergent properties of MSLs,the investigation of the catalytic applications of MSLs materials is still in its infancy.It is therefore very urgent to summarize the advanced development of MSLs in the field of catalysis.In this review,we firstly summarize the advanced fabrication and high-resolution characterization techniques of the MSLs materials,as well as their novel properties related to catalysis represented by electrocatalytic hydrogen evolution reaction(HER).Then,all the MSLs materials such as MoS_(2),WS_(2),and Ru serving as electrocatalysts for HER are further reviewed in detail.Finally,we outline the current challenges as well as the experimental and theoretical strategies to advance the development of function-oriented MSLs materials for catalysis.This review aims to provide profound insight into the wide applications of this novel material platform in catalytic field.展开更多
As a clean,efficient,and sustainable energy,hydrogen is expected to replace traditional fossil energy.A series of studies focusing on morphology regulation,surface modification,and structural reconstruction have been ...As a clean,efficient,and sustainable energy,hydrogen is expected to replace traditional fossil energy.A series of studies focusing on morphology regulation,surface modification,and structural reconstruction have been devoted to improving the intrinsic catalytic activity of non-noble metal catalysts.However,complex system structure design and the mutual interference of various chemical components would hinder the further improvement of hydrogen evolution performance.In recent years,external field assisted hydrogen evolution reaction(HER)has become a new research hotspot.Herein,we systematically summarize the promoting effects of various external fields on catalytic hydrogen production from the aspects of system design and catalytic mechanism,including electric field,thermal field,optical field,magnetic field,and acoustic field.Ultimately,we discuss the key challenges facing this external field regulation strategy and put forward the prospect of future research topics.We sincerely expect that this review could not only provide a new insight into the basic mechanism of external-assisted catalysis,but also promote further research on improving HER performance from a more diverse and comprehensive perspective.展开更多
Electrochemical gas evolution reactions are common but essential in many electrochemical processes including water electrolysis.During these processes,gas bubbles are constantly nucleating on reaction interfaces in el...Electrochemical gas evolution reactions are common but essential in many electrochemical processes including water electrolysis.During these processes,gas bubbles are constantly nucleating on reaction interfaces in electrolyte and consequently exert an impact on catalysts and the performance.In the past few decades,extensive studies have been conducted to characterize bubbles with emerging advanced technologies,manage behaviors of bubbles,and apply bubbles to various domains.In this review,we summarize representative discoveries as well as recent advancements in electrochemical gas evolution reactions from the perspective of gas bubbles.Finally,we end up this review with a profound outlook on future research topics from the combination of experiments and theoretical techniques,non-negligible bubble effects,gravity-free situation,and reactions under practical industrial conditions.展开更多
Molybdenum disulfide(Mo S_(2))has attracted great attention in hydrogen peroxide(H_(2)O_(2))activation as a Fenton-like catalyst and cocatalyst,but the distinct mechanism of generating^(·)OH remains unclear.In th...Molybdenum disulfide(Mo S_(2))has attracted great attention in hydrogen peroxide(H_(2)O_(2))activation as a Fenton-like catalyst and cocatalyst,but the distinct mechanism of generating^(·)OH remains unclear.In this paper,the metallic 1T phase and semiconducting 2H phase of Mo S_(2)nanosheets were prepared and applied in MoS_(2)/H_(2)O_(2)and MoS_(2)/Fe^(2+)/H_(2)O_(2)systems with and without light irradiation.Compared with2H-MoS_(2),1T-MoS_(2)exhibited superior removal rates in degrading organic pollutants in the two systems under light irradiation.However,the phase had little effect on activating H_(2)O_(2)in the Mo S_(2)/H_(2)O_(2)system under dark conditions.This is because it was difficult for the surface^(·)OH_(ads)generated in the Mo S_(2)/H_(2)O_(2)system to diffuse into solution,while the^(·)OH_(free)radicals were mainly responsible for degrading organic pollutants.When introducing light irradiation,external energy may accelerate the desorption of^(·)OH_(ads)into^(·)OH_(free.)Interestingly,the conversion between Mo^(4+)and Mo^(5+)triggered the decomposition of H_(2)O_(2)in the Fenton-like reaction,while the cycle of Mo^(4+)/Mo^(6+)promoted the regeneration of Fe^(3+)when employing 1T-MoS_(2)as a cocatalyst.Meanwhile,the 1T-MoS_(2)catalysts exhibited excellent stability and ability to degrade various organics in the two systems.This work offers deeper insight into the Mo S_(2)-based Fenton-like and cocatalytic mechanisms.展开更多
The regulation of the basic properties of atom-economic catalysts at the atomic scale and atomic-level insights into the underlying mechanism of catalysis are less explored. We engineer the surface of vertical immobil...The regulation of the basic properties of atom-economic catalysts at the atomic scale and atomic-level insights into the underlying mechanism of catalysis are less explored. We engineer the surface of vertical immobilized MoS_(2) on dispersible TiO_(2) nanofibers via atomic subtraction to precisely manipulate active sites at the atomic level. The photocatalytic performances of TiO_(2) @MoS_(2) after H_(2) reduction towards the hydrogen production under visible light irradiation(>420 nm) are about 4 times that of TiO_(2) @MoS_(2) before H_(2) reduction. Importantly, the enhanced stability of TiO_(2) @MoS_(2) lasts for at least 30 h. Promising catalytic activity that is attributed to omnidirectional exposed active sites located defects, edges, corners that are transformed from the subtractive atomic sites could be exhumed comprehensively. This work will provide an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity at the atomic level by atom elimination strategy. To get rid of a few atomics on the surface of atomically-thin MoS_(2) nanosheet could be a prudent avenue for enabling the basal plane of MoS_(2) catalytically active.展开更多
Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the p...Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the past few decades,the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements,and inorganic semiconductors are also now beginning to shine in the field of flexible electronics.As validated by the latest research,some of the inorganic semiconductors,particularly those at low dimension,unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties.Herein,we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics,including one-dimensional(1D)inorganic semiconductor nanowires(NWs)and two-dimensional(2D)transition metal dichalcogenides(TMDs).The fundamental electrical properties,optical properties,mechanical properties and strain engineering of materials,and their performance in flexible device applications are discussed in detail.We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.展开更多
The unique structural features represented by micro-nanoneedle tip structure reflect wonderful physical and chemical properties.The tip effect includes the concentration of energy such as electrons,photons and magneti...The unique structural features represented by micro-nanoneedle tip structure reflect wonderful physical and chemical properties.The tip effect includes the concentration of energy such as electrons,photons and magnetism in the tip region,which has promising applications in the fields of energy conversion,water capture,environmental restoration and so on.In this review,a comprehensive and systematic summary of the latest advances in the application of the tip effect in different fields is provided.Utilizing advanced Finite Difference Time Domain simulation,we further propose our understanding of the fundamental mechanism of the tip effect induced by micro-nanostructure.However,we need to forge the present study to further reveal the essential law of the tip effect from the perspective of theoretical calculations.This review would provide a solid foundation for further development and application of the tip effect.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金the National Natural Science Foundation of China(No.51902101)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171 K).
文摘In the process of electrocatalytic water splitting, the management of gaseous products is an important task. Timely detachment of gaseous products from the electrode surface and the electrolyte is beneficial to the reduction of energy consumption of the electrolytic cell. In the existing industrial electrolytic cells, the circulating pump drives the electrolyte flowing to discharge the gaseous products. Up to now, several much more advanced strategies have been explored to deal with the negative effects of bubbles. In this review, we summarized various strategies for bubble detachment, including electrode design, external field imposing and system upgrading. We also elaborated the principle, functional features, practicability, advantages and limitations of each method. Finally, challenges and perspectives are also provided for the further development of advanced bubbles detachment strategies for efficient hydrogen evolution.
基金the National Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘The transition metal chalcogenides represented by MoS_(2)are the ideal choice for non-precious metal-based hydrogen evolution catalysts.However,whether in acidic or alkaline environments,the catalytic activity of pure MoS_(2)is still difficult to compete with Pt.Recent studies have shown that the electronic structure of materials can be adjusted by constructing lattice-matched heterojunctions,thus optimizing the adsorption free energy of intermediates in the catalytic hydrogen production process of materials,so as to effectively improve the electrocatalytic hydrogen production activity of catalysts.However,it is still a great challenge to prepare heterojunctions with lattice-matched structures as efficient electrocatalytic hydrogen production catalysts.Herein,we developed a one-step hydrothermal method to construct Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)(Ni-MoS_(2)on behalf of Ni doping MoS_(2))electrocatalyst with multiple heterogeneous interfaces which possesses rich catalytic reaction sites.The Ni-MoS_(2)@NiS_(2)@Ni_(3)S_(2)electrocatalyst produced an extremely low overpotential of 69.4 mV with 10 mA·cm^(−2)current density for hydrogen evolution reaction(HER)in 1.0 M KOH.This work provides valuable enlightenment for exploring the mechanism of HER enhancement to optimize the surface electronic structure of MoS_(2),and provides an effective idea for constructing rare metal catalysts in HER and other fields.
基金supported by the Natural Science Foundation of China(No.51902101)the Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金the Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144,NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘Doping foreign metal atoms into the substrate of transition metal dichalcogenides(TMDs)enables the formation of diverse atomic structure configurations,including isolated atoms,chains,and clusters.Therefore,it is very important to reasonably control the atomic structure and determine the structure-activity relationship between the atomic configurations and the hydrogen evolution reaction(HER)performance.Although numerous studies have indicated that doping can yield diverse atomic structure configurations,there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance.Here,diverse atomic structure configurations of adsorptive doping,substitutional doping,and TMDs alloys are summarized.The structure-activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory(DFT)calculations.These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER.Finally,we have summarized the current challenges and future opportunities,offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.
基金financially supported by the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘Grain boundary(GB),as a kind of lattice defect,widely exists in two-dimensional transition metal dichalcogenides(2D TMDs),which has complex and diverse influences on the physical/chemical properties of 2D TMDs.GBs are universally considered to be a double-edged sword,although some electrical and mechanical properties of 2D TMDs would be adversely affected leading to the reduced overall quality,certain structure-oriented applications could be realized based on its unique properties.In this review,we first detailed the atomic structure characteristics of GBs and the corresponding techniques,then we systematically summarized the methods of introducing GBs into 2D TMDs.Next,we expounded unique electrical,mechanical,and chemical properties of the GBs in 2D TMDs and clarified its internal relationship with the atomic structure.Moreover,the application of GB structure in hydrogen evolution reaction(HER)is also discussed.In the end,we make a conclusion and put forward outlooks,hoping to further promote the basic research of GB and boost the wide application of 2D TMDs.
基金the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_0254).
文摘Photothermal effect has been widely employed in the H2 evolution process at the advantage of using clean energy sources to produce another one of higher benefits.The solar-to-heat conversion have various forms and heat can facilitate reactions in a variety of dimensions.Hence,summarizing the sources and destinations of heat is important for constructing hydrogen production systems of higher efficiency.This view mainly focuses on the recent state-of-art progress of hydrogen evolution reaction(HER)based on photothermal effect.First,we introduce the main pathways of photothermal conversions applied in H2 evolution.Then,the functions of the photothermal effect are clearly summarized.Furthermore,we go beyond the catalytic reaction and introduce a method to improve the catalytic system by changing the catalytic bulk phase through thermal means.In the end,we sort out the challenges and outlook to offer some noble insights for this promising area.
基金funded by the National Key R&D Program of China(No.2021YFB3601600)Innovation Support Programme(Soft Science Research)Project Achievements of Jiangsu Province(No.BK20231514)+3 种基金the National Nature Science Foundation of China(Nos.61974062,62004104)the Leading-edge Technology Program of Jiangsu Natural Science Foundation(No.BE2021008–2)The Fundamental Research Foundation for the Central UniversitiesCollaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics。
文摘High-efficiency hydrogen production through photoelectrochemical(PEC)water splitting has emerged as a promising solution to address current global energy challenges.Ⅲ-nitride semiconductor photoelectrodes with nanostructures have demonstrated great potential in the near future due to their high light absorption,tunable direct band gap,and strong physicochemical stability.However,several issues,including surface trapping centers,surface Fermi level pinning,and surface band bending,need to be addressed.In this work,enhanced photovoltaic properties have been achieved using gallium nitride(GaN)nanowires(NWs)photoelectrodes by adopting an alkaline solution surface treatment method to reduce the surface states.It was found that surface oxides on NWs can be removed by an alkaline solution treatment without changing the surface morphology through X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM)and other characterization methods.These findings provide new insights to the development of high-efficiency photoelectrodes for new energy source applications.
基金financially supported by the Natural Science Foundation of China(Nos.22202065,51902101)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144,NY221046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0262)。
文摘Artificial Z(S)-scheme photocatalytic water splitting systems have attracted extensive attention due to their advantages such as wide light absorption range,high charge separation efficiency and strong carrier redox ability.However,it is still challenging to design and prepare Z(S)-scheme photocatalysts with low-cost and highly stability for efficiently photocatalytic overall water splitting using solar energy.This review mainly introduces various strategies to improve the photocatalytic water splitting performance of Z(S)-scheme systems.These strategies mainly focus on enhancing or extending the range of light absorption,promoting charge separation,and enhancing surface redox reaction in Z(S)-scheme systems.Finally,the main challenges of Z(S)-scheme photocatalytic water splitting systems and their future development directions are pointed out.This review would be beneficial to understanding the challenges and opportunities faced by the research field of Z(S)-scheme photocatalytic systems,and has important guiding significance for the development and utilization of high-performance Z(S)-scheme photocatalytic reaction system in the future.
基金supported by the National Natural Science Foundation of China(Nos.52370073,12274115)Program for Science and Technology Innovation Team in Universities of Henan Province(No.24IRTSTHN017)+3 种基金Natural Science Foundation of Henan Province(No.212300410336)Program for Science and Technology Innovation Talent in Universities of Henan Province(No.23HASTIT027)Key Scientific and Technological Project of Henan Province(No.222102320188)Key Project of Science and Technology Research of Henan Provincial Department of Education(No.21A430008)。
文摘Peroxymonosulfate(PMS)activation and photocatalysis are effective technologies to remove organic pollutants,but the adsorption effect of the catalyst is usually unheeded in degradation process.Herein,a bifunctional catalyst of amorphous MoS_(x)(a-MoS_(x))with 3D layer-by-layer superstructure was synthesized by assembling basic active units[Mo_(3)S_(13)]^(2-)of MoS_(2).The large interlayer spacing and high exposure of active sites render a-MoS_(x)to have excellent synergy of adsorption and photo-assisted PMS activation for tetracycline(TC)degradation.Experiments and DFT calculation show that TC can be efficiently enriched on a-MoS_(x)by pore filling,π-πinteraction,hydrogen bonding and high adsorption energy.Subsequently,PMS can be quickly activated through electron transfer with a-MoS_(x),resulting in high TC degradation efficiency of 96.6%within 20 min.In addition,the synergistic mechanism of adsorption and photo-assisted PMS activation was explored,and the degradation pathway of TC was expounded.This work is inspirational for constructing bifunctional catalysts with superior synergistic adsorption and catalytic capabilities to remove refractory organic pollutants in water.
基金financially supported by the National Natural Science of China(No.51902101)Natural Science of Jiangsu Province(No.BK20201381)Science of Nanjing University of Posts and Telecommunications(No.NY219144)。
文摘The physicochemical properties of transition metal dichalcogenides(TMDs)are highly related to their structures and usually stable in air.However,under certain conditions they could be transformed into different structures due to oxidation.Considering this,various materials with fascinating structures have been explored by oxidation strategies,which possess novel properties and great potential in various applications such as solar batteries,hydrogen evolution reaction(HER)catalysts,and field effect transistors(FET).In this review,we systematically summarize the atomic structures of TMD oxidized variants and the corresponding fabrication approaches.Utilizing various characterization methods,the chemical components of TMD oxidized variants are illustrated.Furthermore,we expound the promising applications of the oxidized variants.This review is expected to provide a new insight for preparing precise materials at the atomic level through corresponding oxidation strategies.
基金supported by the National Natural Science Foundation of China(Nos.51902101,61775101,62288102,and 61804082)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)the Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘The weak van der Waals gap endows two dimensional transition metal dichalcogenides(2D TMDs)with the potential to realize guest intercalation and host exfoliation.Intriguingly,the liquid intercalation and exfoliation is a facile,low-cost,versatile and scalable strategy to modulate the structure and physiochemical property of TMDs via introducing foreign species into interlayer.In this review,firstly,we briefly introduce the resultant hybrid superlattice and disperse nanosheets with tailored properties fabricated via liquid intercalation and exfoliation.Subsequently,we systematically analyze the intercalation phenomenon and limitations of various intercalants in chemical or electrochemical methods.Afterwards,we intensely discuss diverse functionalities of resultant materials,focusing on their potential applications in energy conversion,energy storage,water purification,electronics,thermoelectrics and superconductor.Finally,we highlight the challenges and outlooks for precise and mass production of 2D TMDs-based materials via liquid intercalation and exfoliation.This review enriches the overview of liquid intercalation and exfoliation strategy,and paves the path for relevant high-performance devices.
基金financially supported by the Natural Science Foundation of China(Nos.51902101 and 62304112)Natural Science Foundation of Jiangsu Province(Nos.BK20201381 and BK20230359)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY221111).
文摘Environmental pollution and global warming caused by fossil fuels have become increasingly serious issues. Therefore, it is urgent to explore novel strategies to obtain sustainable, renewable and clean energy. Fortunately, ambient energy harvesting technologies, which are receiving increasing attention, provide an optimal solution. Additionally, the investigation of two-dimensional (2D) materials represented by transition metal dichalcogenides (TMDs) significantly facilitates the advancement of ambient energy harvesting technologies due to their unique properties, enabling the application of ambient energy harvesting. Herein, we summarized recent advances in the application of TMDs in thermal energy harvesting, osmotic energy harvesting, mechanical energy harvesting, water energy harvesting and radiofrequency energy harvesting respectively. In the meanwhile, we listed some representative structure and device optimization strategies for enhancing the energy conversion performance of these ambient energy harvesters, aiming to provide valuable insights for future investigations towards further optimization. Finally, we highlight the pressing issues currently faced in the application of the TMDs ambient energy harvesting technologies and propose some potential solutions to these challenges. We aimed to provide a comprehensive review in the applications of the energy harvesting technologies, in order to provide innovative insights for optimizing existing TMDs-based technologies.
基金supported by Innovation Support Programme(Soft Science Research)Project Achievements of Jiangsu Province(No.BK20231514)the National College Student Innovation and Entrepreneurship Training Program(NO.202310293173K).
文摘Precise design and synthesis of sub-nano scale catalysts with controllable electronic and geometric structures are pivotal for enhancing the hydrogen evolution reaction(HER)performance of molybdenum sulfide(MoS_(2))and unraveling its structure−activity relationship.By leveraging transition molybdenum polysulfide clusters as functional units for multi-level ordering,we successfully designed and synthesized MoS_(x)nanowire networks derived from[Mo_(3)S_(13)]^(2−) clusters via evaporationinduced self-assembly,which exhibit enhanced HER activity attributed to a high density of active sites and dynamic evolution behavior under cathodic potentials.MoS_(x) nanowire networks electrode yields a current density of 100 mA·cm^(−2) at 142 mV in 0.5 M H_(2)SO_(4).This work provides an attractive prospect for optimizing catalysts at the sub-nano scale and offers insights into a strategy for designing catalysts in various gas evolution reactions.
基金This work was financially supported by the National Funds for Distinguished Young Scientists(No.61825503)the National Natural Science Foundation of China(Nos.51902101,61775101,and 61804082)+2 种基金the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144).
文摘Vertically stacking two-dimensional(2D)materials with small azimuthal deviation or lattice mismatch generate distinctive global structural periodicity and symmetry,revealed as the moirésuperlattices(MSLs).Manipulating the interlayer twist angle enables the modification of the electronic structure of 2D materials to explore the advanced applications.Although extraordinary progress has been achieved in the unique structure and emergent properties of MSLs,the investigation of the catalytic applications of MSLs materials is still in its infancy.It is therefore very urgent to summarize the advanced development of MSLs in the field of catalysis.In this review,we firstly summarize the advanced fabrication and high-resolution characterization techniques of the MSLs materials,as well as their novel properties related to catalysis represented by electrocatalytic hydrogen evolution reaction(HER).Then,all the MSLs materials such as MoS_(2),WS_(2),and Ru serving as electrocatalysts for HER are further reviewed in detail.Finally,we outline the current challenges as well as the experimental and theoretical strategies to advance the development of function-oriented MSLs materials for catalysis.This review aims to provide profound insight into the wide applications of this novel material platform in catalytic field.
基金This work was financially supported by the National Natural Science Foundation of China(No.51902101)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293017Z).
文摘As a clean,efficient,and sustainable energy,hydrogen is expected to replace traditional fossil energy.A series of studies focusing on morphology regulation,surface modification,and structural reconstruction have been devoted to improving the intrinsic catalytic activity of non-noble metal catalysts.However,complex system structure design and the mutual interference of various chemical components would hinder the further improvement of hydrogen evolution performance.In recent years,external field assisted hydrogen evolution reaction(HER)has become a new research hotspot.Herein,we systematically summarize the promoting effects of various external fields on catalytic hydrogen production from the aspects of system design and catalytic mechanism,including electric field,thermal field,optical field,magnetic field,and acoustic field.Ultimately,we discuss the key challenges facing this external field regulation strategy and put forward the prospect of future research topics.We sincerely expect that this review could not only provide a new insight into the basic mechanism of external-assisted catalysis,but also promote further research on improving HER performance from a more diverse and comprehensive perspective.
基金supported by the National Natural Science Foundation of China(No.51902101)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘Electrochemical gas evolution reactions are common but essential in many electrochemical processes including water electrolysis.During these processes,gas bubbles are constantly nucleating on reaction interfaces in electrolyte and consequently exert an impact on catalysts and the performance.In the past few decades,extensive studies have been conducted to characterize bubbles with emerging advanced technologies,manage behaviors of bubbles,and apply bubbles to various domains.In this review,we summarize representative discoveries as well as recent advancements in electrochemical gas evolution reactions from the perspective of gas bubbles.Finally,we end up this review with a profound outlook on future research topics from the combination of experiments and theoretical techniques,non-negligible bubble effects,gravity-free situation,and reactions under practical industrial conditions.
基金financially supported by the Natural Science Foundation of Henan Province(No.212300410336)Program for Science and Technology Innovation Talent in Universities of Henan Province(No.20HASTIT016)National Natural Science Foundation of China(No.51902101)。
文摘Molybdenum disulfide(Mo S_(2))has attracted great attention in hydrogen peroxide(H_(2)O_(2))activation as a Fenton-like catalyst and cocatalyst,but the distinct mechanism of generating^(·)OH remains unclear.In this paper,the metallic 1T phase and semiconducting 2H phase of Mo S_(2)nanosheets were prepared and applied in MoS_(2)/H_(2)O_(2)and MoS_(2)/Fe^(2+)/H_(2)O_(2)systems with and without light irradiation.Compared with2H-MoS_(2),1T-MoS_(2)exhibited superior removal rates in degrading organic pollutants in the two systems under light irradiation.However,the phase had little effect on activating H_(2)O_(2)in the Mo S_(2)/H_(2)O_(2)system under dark conditions.This is because it was difficult for the surface^(·)OH_(ads)generated in the Mo S_(2)/H_(2)O_(2)system to diffuse into solution,while the^(·)OH_(free)radicals were mainly responsible for degrading organic pollutants.When introducing light irradiation,external energy may accelerate the desorption of^(·)OH_(ads)into^(·)OH_(free.)Interestingly,the conversion between Mo^(4+)and Mo^(5+)triggered the decomposition of H_(2)O_(2)in the Fenton-like reaction,while the cycle of Mo^(4+)/Mo^(6+)promoted the regeneration of Fe^(3+)when employing 1T-MoS_(2)as a cocatalyst.Meanwhile,the 1T-MoS_(2)catalysts exhibited excellent stability and ability to degrade various organics in the two systems.This work offers deeper insight into the Mo S_(2)-based Fenton-like and cocatalytic mechanisms.
基金financially supported by the Natural Science Foundation of China(No.51902101)the Youth Natural Science Foundation of Hunan Province(No.2021JJ540044)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)。
文摘The regulation of the basic properties of atom-economic catalysts at the atomic scale and atomic-level insights into the underlying mechanism of catalysis are less explored. We engineer the surface of vertical immobilized MoS_(2) on dispersible TiO_(2) nanofibers via atomic subtraction to precisely manipulate active sites at the atomic level. The photocatalytic performances of TiO_(2) @MoS_(2) after H_(2) reduction towards the hydrogen production under visible light irradiation(>420 nm) are about 4 times that of TiO_(2) @MoS_(2) before H_(2) reduction. Importantly, the enhanced stability of TiO_(2) @MoS_(2) lasts for at least 30 h. Promising catalytic activity that is attributed to omnidirectional exposed active sites located defects, edges, corners that are transformed from the subtractive atomic sites could be exhumed comprehensively. This work will provide an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity at the atomic level by atom elimination strategy. To get rid of a few atomics on the surface of atomically-thin MoS_(2) nanosheet could be a prudent avenue for enabling the basal plane of MoS_(2) catalytically active.
基金supported by the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_0254).
文摘Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades,thereby fueling the next-generation electronics.In the past few decades,the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements,and inorganic semiconductors are also now beginning to shine in the field of flexible electronics.As validated by the latest research,some of the inorganic semiconductors,particularly those at low dimension,unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties.Herein,we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics,including one-dimensional(1D)inorganic semiconductor nanowires(NWs)and two-dimensional(2D)transition metal dichalcogenides(TMDs).The fundamental electrical properties,optical properties,mechanical properties and strain engineering of materials,and their performance in flexible device applications are discussed in detail.We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.
基金This work was financially supported by the Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金Science Foundation of Nanjing University of Posts and Telecommunications(No.NY219144)the National College Student Innovation and Entrepreneurship Training Program(No.202210293017Z).
文摘The unique structural features represented by micro-nanoneedle tip structure reflect wonderful physical and chemical properties.The tip effect includes the concentration of energy such as electrons,photons and magnetism in the tip region,which has promising applications in the fields of energy conversion,water capture,environmental restoration and so on.In this review,a comprehensive and systematic summary of the latest advances in the application of the tip effect in different fields is provided.Utilizing advanced Finite Difference Time Domain simulation,we further propose our understanding of the fundamental mechanism of the tip effect induced by micro-nanostructure.However,we need to forge the present study to further reveal the essential law of the tip effect from the perspective of theoretical calculations.This review would provide a solid foundation for further development and application of the tip effect.