Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairme...Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development.展开更多
Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rare...Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.展开更多
Objective:Electroacupuncture(EA)is an alternative treatment option for pain.Different frequencies of EA have different painrelieving effects;however,the central mechanism is still not well understood.Methods:The Fos2A...Objective:Electroacupuncture(EA)is an alternative treatment option for pain.Different frequencies of EA have different painrelieving effects;however,the central mechanism is still not well understood.Methods:The Fos2A-iCreER(TRAP):Ai9 mice were divided into three groups(sham,2 Hz,and 100 Hz).The mice were intraperitoneally injected with 4-hydroxytamoxifen(4-OHT)immediately after EA at Zusanli(ST36)for 30 min to record the activated neurons.One week later,the mice were sacrificed,and the number of TRAP-treated neurons activated by EA in the thalamus,amygdala,cortex,and hypothalamus was determined.Results:In the cortex,2 Hz EA activated more TRAP-treated neurons than 100 Hz EA did in the cingulate cortex area 1(Cg1)and primary somatosensory cortex(S1),and 2 and 100 Hz EAs did not differ from sham EA.TRAP-treated neurons activated by 2 Hz EA were upregulated in the insular cortex(IC)and secondary somatosensory cortex(S2)compared with those activated by 100 Hz and sham EA.In the thalamus,the number of TRAP-treated neurons activated by 2 Hz EA was elevated in the paraventricular thalamic nucleus(PV)compared with those activated by sham EA.In the ventrolateral thalamic nucleus(VL),the number of TRAPtreated neurons activated by 2 Hz EA was significantly upregulated compared with those activated by 100 Hz EA,and sham EA showed no difference compared with 2 or 100 Hz EA.TRAP-treated neurons were more frequently activated in the ventral posterolateral thalamic nucleus(VPL)by 2 Hz EA than by 100 Hz or sham EA.Conclusions:Low-frequency EA ST36 effectively activates neurons in the Cg1,S1,S2,IC,VPL,PV,and VL.The enhanced excitability of the aforementioned nuclei induced by low-frequency EA may be related to its superior efficacy in the treatment of neuropathological pain.展开更多
Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance co...Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field.展开更多
Electrode materials are of decisive importance in determining the performance of electrochemical energy storage(EES)devices.Typically,the electrode materials are physically mixed with polymer binders and conductive ad...Electrode materials are of decisive importance in determining the performance of electrochemical energy storage(EES)devices.Typically,the electrode materials are physically mixed with polymer binders and conductive additives,which are then loaded on the current collectors to function in real devices.Such a configuration inevitably reduces the content of active species and introduces quite some undesired interfaces that bring down the energy densities and power capabilities.One viable solution to address this issue is to construct self-supported electrodes where the active species,for example transition metal oxides(TMOs),are directly integrated with conductive substrates without polymer binders and conductive additives.In this review,the recent progress of self-supported TMO-based electrodes for EES devices including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),aluminum-ion batteries(AIBs),metal-air batteries,and supercapacitors(SCs),is discussed in great detail.The focused attention is firstly concentrated on their structural design and controllable synthesis.Then,the mechanism understanding of the enhanced electrochemical performance is presented.Finally,the challenges and prospects of self-supported TMO-based electrodes are summarized to end this review.展开更多
Due to their capability of reversibly accepting multi lithium ions,polyoxometalates(POMs)have been widely regarded as promising candidates for electrochemical lithium storage.Nevertheless,the insulating nature of POMs...Due to their capability of reversibly accepting multi lithium ions,polyoxometalates(POMs)have been widely regarded as promising candidates for electrochemical lithium storage.Nevertheless,the insulating nature of POMs hinders fast migration kinetics of lithium within the bulk of these materials.Herein,we propose the introduction of a local electric field surrounding the POM nanoparticles consisting of Mn and V where the concomitant Coulomb forces can accelerate the migration of lithium ions.After rationally hybridizing POMs with MXene nanosheets,the imbalanced charge distribution emerging at their interface produces the local electric field,thereby leading to a 250-fold increase of lithium diffusion coefficient.In this regard,a capacitive contribution as high as 81.7%at 1.0 mV sis observed.Moreover,the POM nanoparticles could densely assemble on the surface of MXene nanosheets,offering highly packed electrodes and thus high volumetric capacities.Due to the improved lithiumion transfer kinetics,the POMs/MXenes composites are paired with activated carbon to produce lithium-ion capacitors which could offer a high energy density of 195.5 W h kgand a large power capability of 3800 W kg.The findings in this work could build a clear relationship between materials with different conductivities for designing electrode materials.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82374561(to JD),82174490(to JF)the Medical and Health Science and Technology Program of Zhejiang Province,No.2021RC098(to JD)the Research Project of Zhejiang Chinese Medical University,Nos.2022JKZKTS44(to JD),2022FSYYZZ07(to JF).
文摘Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development.
基金financially supported by the National Natural Science Foundation of China(22179145,22138013,and 21975287)Shandong Provincial Natural Science Foundation(ZR2020ZD08)+1 种基金Taishan Scholar Project(no.ts201712020)the startup support grant from China University of Petroleum(East China)
文摘Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.
基金supported by the National Natural Science Fund of China(82374561,82174490,81873360)the Zhejiang Medical and Health Science and Technology Program(2021RC098)the Research Project of Zhejiang Chinese Medical University(2022JKZKTS44).
文摘Objective:Electroacupuncture(EA)is an alternative treatment option for pain.Different frequencies of EA have different painrelieving effects;however,the central mechanism is still not well understood.Methods:The Fos2A-iCreER(TRAP):Ai9 mice were divided into three groups(sham,2 Hz,and 100 Hz).The mice were intraperitoneally injected with 4-hydroxytamoxifen(4-OHT)immediately after EA at Zusanli(ST36)for 30 min to record the activated neurons.One week later,the mice were sacrificed,and the number of TRAP-treated neurons activated by EA in the thalamus,amygdala,cortex,and hypothalamus was determined.Results:In the cortex,2 Hz EA activated more TRAP-treated neurons than 100 Hz EA did in the cingulate cortex area 1(Cg1)and primary somatosensory cortex(S1),and 2 and 100 Hz EAs did not differ from sham EA.TRAP-treated neurons activated by 2 Hz EA were upregulated in the insular cortex(IC)and secondary somatosensory cortex(S2)compared with those activated by 100 Hz and sham EA.In the thalamus,the number of TRAP-treated neurons activated by 2 Hz EA was elevated in the paraventricular thalamic nucleus(PV)compared with those activated by sham EA.In the ventrolateral thalamic nucleus(VL),the number of TRAPtreated neurons activated by 2 Hz EA was significantly upregulated compared with those activated by 100 Hz EA,and sham EA showed no difference compared with 2 or 100 Hz EA.TRAP-treated neurons were more frequently activated in the ventral posterolateral thalamic nucleus(VPL)by 2 Hz EA than by 100 Hz or sham EA.Conclusions:Low-frequency EA ST36 effectively activates neurons in the Cg1,S1,S2,IC,VPL,PV,and VL.The enhanced excitability of the aforementioned nuclei induced by low-frequency EA may be related to its superior efficacy in the treatment of neuropathological pain.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M672166National Natural Science Foundation of China,Grant/Award Numbers:21975287,52002401+4 种基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2018ZC1458Taishan Scholar Project of Shandong Province,Grant/Award Number:ts201712020Technological Leading Scholar of 10000 Talent Project,Grant/Award Number:W03020508Shandong Postdoctoral Program for Innovation Talents,Grant/Award Number:sdbX20190032Postdoctoral Applied Research Project of Qingdao,Grant/Award Number:qdyy20110014。
文摘Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field.
基金This work was finally supported by the National Nature Science Foundation of China(Grant No.21975287)the start-up funding support of China University of Petroleum(East China),Taishan Scholar Project(Grant No.ts201712020)+1 种基金Technological Leading Scholar of 10000 Talent Project(Grant No.W03020508)Shandong Provincial Natural Science Foundation(Grant No.ZR2018ZC1458).
文摘Electrode materials are of decisive importance in determining the performance of electrochemical energy storage(EES)devices.Typically,the electrode materials are physically mixed with polymer binders and conductive additives,which are then loaded on the current collectors to function in real devices.Such a configuration inevitably reduces the content of active species and introduces quite some undesired interfaces that bring down the energy densities and power capabilities.One viable solution to address this issue is to construct self-supported electrodes where the active species,for example transition metal oxides(TMOs),are directly integrated with conductive substrates without polymer binders and conductive additives.In this review,the recent progress of self-supported TMO-based electrodes for EES devices including lithium-ion batteries(LIBs),sodium-ion batteries(SIBs),aluminum-ion batteries(AIBs),metal-air batteries,and supercapacitors(SCs),is discussed in great detail.The focused attention is firstly concentrated on their structural design and controllable synthesis.Then,the mechanism understanding of the enhanced electrochemical performance is presented.Finally,the challenges and prospects of self-supported TMO-based electrodes are summarized to end this review.
基金supported by the National Natural Science Foundation of China(21975258,22179145,and 22138013)the Natural Science Foundation of Shandong Province(ZR2020ZD08)+1 种基金the startup support grant from China University of Petroleum(East China)Taishan Scholar Project(ts201712020)。
文摘Due to their capability of reversibly accepting multi lithium ions,polyoxometalates(POMs)have been widely regarded as promising candidates for electrochemical lithium storage.Nevertheless,the insulating nature of POMs hinders fast migration kinetics of lithium within the bulk of these materials.Herein,we propose the introduction of a local electric field surrounding the POM nanoparticles consisting of Mn and V where the concomitant Coulomb forces can accelerate the migration of lithium ions.After rationally hybridizing POMs with MXene nanosheets,the imbalanced charge distribution emerging at their interface produces the local electric field,thereby leading to a 250-fold increase of lithium diffusion coefficient.In this regard,a capacitive contribution as high as 81.7%at 1.0 mV sis observed.Moreover,the POM nanoparticles could densely assemble on the surface of MXene nanosheets,offering highly packed electrodes and thus high volumetric capacities.Due to the improved lithiumion transfer kinetics,the POMs/MXenes composites are paired with activated carbon to produce lithium-ion capacitors which could offer a high energy density of 195.5 W h kgand a large power capability of 3800 W kg.The findings in this work could build a clear relationship between materials with different conductivities for designing electrode materials.