Retaining the ultrathin structure of two-dimensional materials is very important for stabilizing their catalytic performances.However,aggregation and restacking are unavoidable,to some extent,due to the van der Waals ...Retaining the ultrathin structure of two-dimensional materials is very important for stabilizing their catalytic performances.However,aggregation and restacking are unavoidable,to some extent,due to the van der Waals interlayer interaction of two-dimensional materials.Here,we address this challenge by preparing an origami accordion structure of ultrathin twodimensional graphitized carbon nitride(oa-C_(3)N_(4))with rich vacancies.This novel structured oa-C_(3)N_(4) shows exceptional photocatalytic activity for the CO_(2) reduction reaction,which is 8.1 times that of the pristine C_(3)N_(4).The unique structure not only prevents restacking but also increases light harvesting and the density of vacancy defects,which leads to modification of the electronic structure,regulation of the CO_(2) adsorption energy,and a decrease in the energy barrier of the carbon dioxide to carboxylic acid intermediate reaction.This study provides a new avenue for the development of stable highperformance two-dimensional catalytic materials.展开更多
The properties and applications of boron nitride (BN) nanosheets are com- plementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biom...The properties and applications of boron nitride (BN) nanosheets are com- plementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biomedical applications but has not been investigated experimentally. We studied the biocompatibility of BN nanosheets of different sizes and compared it with that of BN nanoparticles in osteoblast-like cells (SaOS2). Our results showed that the biocompatibility of BN nanomaterials depends on their size, shape, structure, and surface chemical properties. Electron spin resonance measurement revealed that unsaturated B atoms located at the nanosheet edges or on the particle surface are responsible for the cell death.展开更多
基金Jilin Province Science and Technology Development Program,Grant/Award Number:20190201233JCProject for Self-innovation Capability Construction of Jilin Province Development and Reform Commission,Grant/Award Number:2021C026+3 种基金Program for JLU Science and Technology Innovative Research Team,Grant/Award Numbers:JLUSTIRT,2017TD-09National Natural Science Foundation of China,Grant/Award Numbers:12034002,51872116Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province,Grant/Award Number:JC2018004Excellent Young Foundation of Harbin Normal University,Grant/Award Number:XKYQ201304。
文摘Retaining the ultrathin structure of two-dimensional materials is very important for stabilizing their catalytic performances.However,aggregation and restacking are unavoidable,to some extent,due to the van der Waals interlayer interaction of two-dimensional materials.Here,we address this challenge by preparing an origami accordion structure of ultrathin twodimensional graphitized carbon nitride(oa-C_(3)N_(4))with rich vacancies.This novel structured oa-C_(3)N_(4) shows exceptional photocatalytic activity for the CO_(2) reduction reaction,which is 8.1 times that of the pristine C_(3)N_(4).The unique structure not only prevents restacking but also increases light harvesting and the density of vacancy defects,which leads to modification of the electronic structure,regulation of the CO_(2) adsorption energy,and a decrease in the energy barrier of the carbon dioxide to carboxylic acid intermediate reaction.This study provides a new avenue for the development of stable highperformance two-dimensional catalytic materials.
文摘The properties and applications of boron nitride (BN) nanosheets are com- plementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biomedical applications but has not been investigated experimentally. We studied the biocompatibility of BN nanosheets of different sizes and compared it with that of BN nanoparticles in osteoblast-like cells (SaOS2). Our results showed that the biocompatibility of BN nanomaterials depends on their size, shape, structure, and surface chemical properties. Electron spin resonance measurement revealed that unsaturated B atoms located at the nanosheet edges or on the particle surface are responsible for the cell death.