期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Kinetic Model for Describing the Effect of Proteins on the Air-Water Interface Tension 被引量:1
1
作者 luis alberto panizzolo luis Eduardo Mussio Maria Cristina Anon 《Journal of Food Science and Engineering》 2014年第6期282-290,共9页
The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quanti... The main objective of this work was to develop a kinetic model to describe the variation of the surface tension in an air-water interface due to the adsorption of proteins from different origins and to identify quantitatively the relevant parameters, it was considered that the processes of adsorption, unfolding and reordering of the protein molecule in the interface occur simultaneously. The model used in the present work to calculate the surface tension postulates the existence of two simultaneous processes, adsorption and protein rearrangement represented with an equation of first order with two exponential components. The relevant parameter of the equation are ka and kr-the rate constants of the two first order kinetic phases that correspond to both conformational states of the protein, adsorption and rearrangement during the process of variation of the surface tension, and the amplitude parameters Aa and Ar. The results suggest that the kinetic model for the variation of the surface tension of protein solutions proposed in this work, with two simultaneous first order processes, is more appropriate than previous models to describe such variation. 展开更多
关键词 Interface tension PROTEINS kinetic model.
下载PDF
Kinetics for Describing the Creaming of Protein-Stabilized O/W Emulsions by Multiple Light Scattering
2
作者 luis alberto panizzolo luis Eduardo Mussio María Cristina Anon 《Journal of Food Science and Engineering》 2014年第5期236-243,共8页
In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering p... In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate. 展开更多
关键词 EMULSION PROTEINS CREAMING KINETIC multiple light scattering.
下载PDF
Effect of Acid Treatment on Interfacial and Foam Properties of Soy Proteins
3
作者 Cecilia Abirached Claudia Alejandra Medrano +2 位作者 Patrick Moyna Maria Cristina Anon luis alberto panizzolo 《Journal of Food Science and Engineering》 2015年第1期1-13,共13页
The goal of the present work was to study the effects of acid treatment on the foaming properties of a soybean protein isolate (SPI) and its fractions, glycinin (11S) and β-conglycinin (7S). The structural char... The goal of the present work was to study the effects of acid treatment on the foaming properties of a soybean protein isolate (SPI) and its fractions, glycinin (11S) and β-conglycinin (7S). The structural characteristics, interfacial properties, foaming capacity and stability of the treated proteins were studied. Results from surface hydrophobicity and differential scanning calorimetry (DSC) showed that the acid treatment caused the complete denaturation of 11S and a partial denaturation of 7S. This protein unfolding affected their interracial properties, which led to an improvement in the foaming properties of both protein fractions and isolate. Treated 7S showed the best behavior in the rearrangement process, probably due to its smaller size and its modified structural characteristics. All treated proteins showed stronger interracial films. The foams of treated proteins were destabilized mostly due to gravitational drainage rather than Ostwald ripening. 展开更多
关键词 Soy proteins FOAMS gravitational drainage Ostwald ripening.
下载PDF
Comparison of Interfacial and Foaming Properties of Soy and Whey Protein Isolates
4
作者 Cecilia Abirached Claudia Alejandra Medrano +3 位作者 Aria Claudia Araujo Patrick Moyna Maria Cristina Anon luis alberto panizzolo 《Journal of Food Science and Engineering》 2012年第7期376-381,共6页
A comparative study on the foaming properties and behavior at the air-water interface of soy and whey protein isolates were made, Foams were obtained by the method of gas bubbling. The initial rate of passage of liqui... A comparative study on the foaming properties and behavior at the air-water interface of soy and whey protein isolates were made, Foams were obtained by the method of gas bubbling. The initial rate of passage of liquid to the foam (vi) and the maximum volume of liquid incorporated to the foam (VLEmax) were determined. The destabilization process of the formed foams was analyzed by a biphasic second order equation. Measurements of equilibrium surface tension (water/air) and surface rheological properties were carried out in a dynamic drop tensiometer. The foaming capacity (vi and VLEmax) and the stability of foams prepared with the whey protein isolates (WPI) were better than those formulated with the soy protein isolates (SPI). WPI foams were more stable showing the lower values of rate constants of gravity drainage and disproportion. There were significant differences (P 〈 0.05) in the dilatational modulus in the surface rheology measurements, which were higher at the interface with WPI, implying greater resistance of the film formed to collapse and disproportion. In conclusion, WPI formed better and more stable foams than the SPI. 展开更多
关键词 Soy protein isolates (SPI) whey protein isolates (WPI) disproportion gravitational drainage.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部