Rotary tables are equipments in precision machinery applied in five-axis Machine Tools and CMM (Coordinate Measuring Machines), offering rotational (C-axis) and tilting motion (A-axis), allowing the obtaining of...Rotary tables are equipments in precision machinery applied in five-axis Machine Tools and CMM (Coordinate Measuring Machines), offering rotational (C-axis) and tilting motion (A-axis), allowing the obtaining of several configurations for manufacturing or inspection of parts with complex geometries. The demand for high accuracy, high efficiency and fewer errors in the positioning of the part in precision machines increases every day, thus ensuring their high confidence and the use of aerostatic bearings enable constructive innovations to the equipment. In this context, this work presents the mechanical design, the development and error analysis of a prototype of an aerostatic rotary table. This study emphasizes the analysis of a prototype that uses the air as a working principle for reducing friction between moving parts, increasing the mechanical efficiency, and its influence of motion error is also discussed based on the experimental results. For the geometrical errors analysis, experimental tests were realized in laboratory using a DBB (Double Ballbar). The tests are performed with only one axis moving, observing the behavior of the system for different feedrate at the C-axis.展开更多
Currently, engineering processes require reduced manufacturing time and low cost, in addition to the growing demand for workpieces with high accuracy. Workpieces with complex geometries and free forms has been a commo...Currently, engineering processes require reduced manufacturing time and low cost, in addition to the growing demand for workpieces with high accuracy. Workpieces with complex geometries and free forms has been a common practice in industries from different sectors such as: automotive, aeronautics, bioengineering among others. One way to satisfy the market requirements satisfactorily is making measurements more efficient to make the production process faster, in other words, it is necessary to make the inspection system more accurate and flexible. The coordinate measuring evolved over the past three decades and today it is the technology that best meets the requirements of modem manufacturing through CMMs (coordinate measurement machines). The CMMs are important tool for design, fabrication and inspection of manufactured products, also used in the application of reverse engineering. These machines are also used by engineers in order to produce an accurate digital model in a virtual space for later use in CAD (computer-aided design)/CAM (computer-aided manufacturing). It is worth mentioning that the accuracy of the modeling process of given piece depends on the number of control points that are captured on the workpiece surface. Consequently, the laser inspection systems are the best tools for use in reverse engineering, but more expensive when compared to contact measurement systems that use the TTP (touch trigger probe), also used by CMMs. In this case, this paper aims to present an approach based on NURBS (non-uniform rational B-splines) to obtain free form curves and surfaces from a group of points obtained by using a contact sensor, the touch trigger probe. NURBS is an important mathematical tool and consists of generalizations of Bezier curves and surfaces and B-splines. The approach proposed in this paper can be applied for obtaining free form curves and surfaces in spur and helical gears. Experimental results obtained by measuring spur gears showed that the NURBS technique contributes for application of CMMs with touch trigger probe in reverse engineering.展开更多
文摘Rotary tables are equipments in precision machinery applied in five-axis Machine Tools and CMM (Coordinate Measuring Machines), offering rotational (C-axis) and tilting motion (A-axis), allowing the obtaining of several configurations for manufacturing or inspection of parts with complex geometries. The demand for high accuracy, high efficiency and fewer errors in the positioning of the part in precision machines increases every day, thus ensuring their high confidence and the use of aerostatic bearings enable constructive innovations to the equipment. In this context, this work presents the mechanical design, the development and error analysis of a prototype of an aerostatic rotary table. This study emphasizes the analysis of a prototype that uses the air as a working principle for reducing friction between moving parts, increasing the mechanical efficiency, and its influence of motion error is also discussed based on the experimental results. For the geometrical errors analysis, experimental tests were realized in laboratory using a DBB (Double Ballbar). The tests are performed with only one axis moving, observing the behavior of the system for different feedrate at the C-axis.
文摘Currently, engineering processes require reduced manufacturing time and low cost, in addition to the growing demand for workpieces with high accuracy. Workpieces with complex geometries and free forms has been a common practice in industries from different sectors such as: automotive, aeronautics, bioengineering among others. One way to satisfy the market requirements satisfactorily is making measurements more efficient to make the production process faster, in other words, it is necessary to make the inspection system more accurate and flexible. The coordinate measuring evolved over the past three decades and today it is the technology that best meets the requirements of modem manufacturing through CMMs (coordinate measurement machines). The CMMs are important tool for design, fabrication and inspection of manufactured products, also used in the application of reverse engineering. These machines are also used by engineers in order to produce an accurate digital model in a virtual space for later use in CAD (computer-aided design)/CAM (computer-aided manufacturing). It is worth mentioning that the accuracy of the modeling process of given piece depends on the number of control points that are captured on the workpiece surface. Consequently, the laser inspection systems are the best tools for use in reverse engineering, but more expensive when compared to contact measurement systems that use the TTP (touch trigger probe), also used by CMMs. In this case, this paper aims to present an approach based on NURBS (non-uniform rational B-splines) to obtain free form curves and surfaces from a group of points obtained by using a contact sensor, the touch trigger probe. NURBS is an important mathematical tool and consists of generalizations of Bezier curves and surfaces and B-splines. The approach proposed in this paper can be applied for obtaining free form curves and surfaces in spur and helical gears. Experimental results obtained by measuring spur gears showed that the NURBS technique contributes for application of CMMs with touch trigger probe in reverse engineering.