To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts bea...This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.展开更多
Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(...Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(UAVs)help relay messages to improve communication performance,but the relay policy that depends on the rapidly changing maritime environments is difficult to optimize.In this paper,a reinforcement learning-based UAV relay policy for maritime communications is proposed to resist jamming attacks.Based on previous transmission performance,the relay location,the received power of the transmitted signal and the received jamming power,this scheme optimizes the UAV trajectory and relay power to save the energy consumption and decrease the Bit-Error-Rate(BER)of the maritime signals.A deep reinforcement learning-based scheme is also proposed,which designs a deep neural network with dueling architecture to further improve the communication performance and computational complexity.The performance bounds regarding the signal to interference plus noise ratio,energy consumption and the communication utility are provided based on the Nash equilibrium of the game against jamming,and the computational complexity of the proposed schemes is analyzed.Simulation results show that the proposed schemes improve the energy efficiency and decrease the BER compared with the benchmark.展开更多
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
基金supported by the National Natural Science Foundation of China under Grant No.61901523 and No.62071488.
文摘This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.
基金This work was supported in part by the Funds of the National Natural Science Foundation of China under Grant(U21A20444,61971366)in part by the Fundamental Research Funds for the central universities No.20720210073.
文摘Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(UAVs)help relay messages to improve communication performance,but the relay policy that depends on the rapidly changing maritime environments is difficult to optimize.In this paper,a reinforcement learning-based UAV relay policy for maritime communications is proposed to resist jamming attacks.Based on previous transmission performance,the relay location,the received power of the transmitted signal and the received jamming power,this scheme optimizes the UAV trajectory and relay power to save the energy consumption and decrease the Bit-Error-Rate(BER)of the maritime signals.A deep reinforcement learning-based scheme is also proposed,which designs a deep neural network with dueling architecture to further improve the communication performance and computational complexity.The performance bounds regarding the signal to interference plus noise ratio,energy consumption and the communication utility are provided based on the Nash equilibrium of the game against jamming,and the computational complexity of the proposed schemes is analyzed.Simulation results show that the proposed schemes improve the energy efficiency and decrease the BER compared with the benchmark.