Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of no...Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of noises other than shot noise is reduced from 92.6%to 62.4%,demonstrating the possibility towards shotnoise-limited measurement.Using noise thermometry,we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements.With detailed analysis and optimization of signal transduction,we achieve 1.2 fm/Hz^(1/2)displacement measurement sensitivity at room temperature in twodimensional(2D)Ca Nb_(2)O_(6)nanomechanical resonators,the best value reported to date among all resonators based on 2D materials.Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.展开更多
The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with t...The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.展开更多
Two-dimensional(2D)non-layered materials,along with their unique surface properties,offer intriguing prospects for sensing applications.Introducing mechanical degrees of freedom is expected to enrich the sensing perfo...Two-dimensional(2D)non-layered materials,along with their unique surface properties,offer intriguing prospects for sensing applications.Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices,such as high frequency,high tunability,and large dynamic range,which could lead to new types of high performance nanosensors.Here,we demonstrate 2D non-layered nanomechanical resonant sensors based onβ-In_(2)S_(3),where the devices exhibit robust nanomechanical vibrations up to the very high frequency(VHF)band.We show that such device can operate as pressure sensor with broad range(from 103 Torr to atmospheric pressure),high linearity(with a nonlinearity factor as low as 0.0071),and fast response(with an intrinsic response time less than 1μs).We further unveil the frequency scaling law in theseβ-In_(2)S_(3) nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal.Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.展开更多
Intracranial aneurysm(IA)is characterized by defects in the middle muscular layer and pathological dilatation of cerebral arteries.The rupture of IA,resulting in aneurysmal subarachnoid hemorrhage,poses a substantial ...Intracranial aneurysm(IA)is characterized by defects in the middle muscular layer and pathological dilatation of cerebral arteries.The rupture of IA,resulting in aneurysmal subarachnoid hemorrhage,poses a substantial public health problem,especially in developed countries,due to its high mortality,morbidity,and socioeconomic burden(Bakker and Ruigrok,2021).Understanding the risk factors for IA is critical for disease prevention.Although numerous studies(Yan et al.,2015;Santiago-Sim et al.,2016;Barak et al.,2021;Liu et al.,2021)have highlighted familial aggregation of IA and identified candidate genes such as ADAMTS15,THSD1,ANK3,and PPIL4,the mechanisms underlying IA formation and rupture remain unclear.展开更多
With increasing challenges towards continued scaling and improve-ment in performance faced by electronic computing,mechanical com-puting has started to attract growing interests.Taking advantage of the mechanical degr...With increasing challenges towards continued scaling and improve-ment in performance faced by electronic computing,mechanical com-puting has started to attract growing interests.Taking advantage of the mechanical degree of freedom in solid state devices,micro/nano-electromechanical systems(MEMS/NEMS)could provide alternative solutions for future computing and memory systems with ultralow power consumption,compatibility with harsh environments,and high reconfigurability.In this review,MEMS/NEMS-enabled memories and logic processors were surveyed,and the prospects and challenges for future on-chip mechanical computing were also analyzed.展开更多
基金the National Key R&D Program of China(Grant No.2022YFB3203600)the National Natural Science Foundation of China(Grant Nos.62150052,62250073,U21A20459,62004026,61774029,62104029,and 12104086)+2 种基金the Sichuan Science and Technology Program(Grant No.2021YJ0517 and 2021JDTD0028)the Natural Science Foundation of Hunan Province(Grant No.2021JJ40780)the Science and Technology Innovation Program of Hunan Province“Hu Xiang Young Talents”(Grant No.2021RC3021)。
文摘Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of noises other than shot noise is reduced from 92.6%to 62.4%,demonstrating the possibility towards shotnoise-limited measurement.Using noise thermometry,we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements.With detailed analysis and optimization of signal transduction,we achieve 1.2 fm/Hz^(1/2)displacement measurement sensitivity at room temperature in twodimensional(2D)Ca Nb_(2)O_(6)nanomechanical resonators,the best value reported to date among all resonators based on 2D materials.Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.
基金the National Natural Science Fund for Distinguished Young Scholars(22025803)supported by the National Natural Science Foundation of China(22178338)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021018)the financial support of project“Research and development and industrial application of new catalytic materials for green synthesis of MMA to replace highly toxic HCN”(Hebei,20374002D)。
文摘The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.
基金National Natural Science Foundation of China,Grant/Award Numbers:T2325007,62250073,U21A20459,62004026,61774029,62104029,12104086,U23A20570,51902346Sichuan Science and Technology Program,Grant/Award Numbers:24NSFSC5852,24NSFSC5853Science and Technology Innovation Program of Hunan Province,Grant/Award Number:2021RC3021。
文摘Two-dimensional(2D)non-layered materials,along with their unique surface properties,offer intriguing prospects for sensing applications.Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices,such as high frequency,high tunability,and large dynamic range,which could lead to new types of high performance nanosensors.Here,we demonstrate 2D non-layered nanomechanical resonant sensors based onβ-In_(2)S_(3),where the devices exhibit robust nanomechanical vibrations up to the very high frequency(VHF)band.We show that such device can operate as pressure sensor with broad range(from 103 Torr to atmospheric pressure),high linearity(with a nonlinearity factor as low as 0.0071),and fast response(with an intrinsic response time less than 1μs).We further unveil the frequency scaling law in theseβ-In_(2)S_(3) nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal.Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.
基金supported by the National Natural Science Foundation of China(32222028)Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-MSX0505)+1 种基金Financial Science and Technology Project of Hunan Province,China(422000008)Hunan Province Nature Science Foundation,China(2021JJ30911).
文摘Intracranial aneurysm(IA)is characterized by defects in the middle muscular layer and pathological dilatation of cerebral arteries.The rupture of IA,resulting in aneurysmal subarachnoid hemorrhage,poses a substantial public health problem,especially in developed countries,due to its high mortality,morbidity,and socioeconomic burden(Bakker and Ruigrok,2021).Understanding the risk factors for IA is critical for disease prevention.Although numerous studies(Yan et al.,2015;Santiago-Sim et al.,2016;Barak et al.,2021;Liu et al.,2021)have highlighted familial aggregation of IA and identified candidate genes such as ADAMTS15,THSD1,ANK3,and PPIL4,the mechanisms underlying IA formation and rupture remain unclear.
基金We gratefully acknowledge the support from National Natural Science Foundation of China(Grants 62250073,U21A20505,U21A20459,62150052,62104029,12104086,62004026,62004032,62104140)Sichuan Science and Technology Program(Grants 2021YJ0517,2021JDTD0028)+2 种基金Fundamental Research Funds for the Central Universities(ZYGX2020ZB014 and ZYGX2020J029)Lingang Laboratory Open Re-search Fund(Grant LG-QS-202202-11)Biren Technology-Shanghai Jiao Tong University Joint Laboratory Open Research Fund,and Science and Technology Commission of Shanghai Municipality(STCSM)Natural Science Project General Program(Grant 21ZR1433800).
文摘With increasing challenges towards continued scaling and improve-ment in performance faced by electronic computing,mechanical com-puting has started to attract growing interests.Taking advantage of the mechanical degree of freedom in solid state devices,micro/nano-electromechanical systems(MEMS/NEMS)could provide alternative solutions for future computing and memory systems with ultralow power consumption,compatibility with harsh environments,and high reconfigurability.In this review,MEMS/NEMS-enabled memories and logic processors were surveyed,and the prospects and challenges for future on-chip mechanical computing were also analyzed.