BACKGROUND Cognitive impairment,which manifests as a limited deterioration of specific functions associated with a particular disease,can lead to a general deterioration of the patient’s standard of living.Transcrani...BACKGROUND Cognitive impairment,which manifests as a limited deterioration of specific functions associated with a particular disease,can lead to a general deterioration of the patient’s standard of living.Transcranial magnetic stimulation,a noninvasive neuromodulation technique,is frequently employed to treat cognitive impairment in neuropsychiatric disorders.AIM To analyzed the state of international research on neuromodulation methods for treating cognitive impairment between 2014 and 2023,with the aim of exploring the state of research worldwide and the most recent developments in this particular area.METHODS Articles and reviews pertaining to neuromodulation methods for cognitive impairment were examined using the web of science database between January 2014 and December 2023.Publications,nations,organizations,writers,journals,citations,and keywords data from the identified studies were systematically analyzed using the CiteSpace 6.3.R1 software.RESULTS A total of 2371 documents with 11750 authors and 9461 institutions,with some cooccurrences,were retrieved.The quantity of yearly publications is showing an increasing trend.The United States and China have emerged as important contributors.Among the institutes,Harvard University had the highest number of publications,while Rossi S an author who is frequently cited.Initially,the primary keywords included human motor cortex,placebo-controlled trials,and serotonin reuptake inhibitors.However,the emphasis gradually moved to substance use disorders,supplementary motor areas,neural mechanisms,and exercise.CONCLUSION The use of neuromodulation techniques to treat cognitive impairment has drawn interest from academics all around the world.This study revealed hotspots and new trends in the research of transcranial magnetic stimulation as a cognitive impairment rehabilitation treatment.These findings are hold significant potential to guide further research and thus promote transcranial magnetic stimulation as a treatment method for cognitive impairment.展开更多
NiMo-based nanostructures are among the most active hydrogen evolution reaction(HER)catalysts under an alkaline environment due to their strong water dissociation ability.However,these nanostructures are vulnerable to...NiMo-based nanostructures are among the most active hydrogen evolution reaction(HER)catalysts under an alkaline environment due to their strong water dissociation ability.However,these nanostructures are vulnerable to the destructive effects of H_(2) production,especially at industry-standard current densities.Therefore,developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities.Here,a hierarchical interconnected NiMoN(HW-NiMoN-2h)with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes.HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology,in which nanowires con-nect free-standing nanorods,concurrently strengthening its structural stability to withstand H_(2) production at 1 A cm^(−2).Seawater is an attractive feedstock for water electrolysis since H_(2) generation and water desalination can be addressed simultaneously in a single process.The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ions interferes with the reation kinetics,thus lowering its activity slightly.However,benefiting from its hierarchical and interconnected characteristics,HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm^(−2) at 130 mV overpotential and to exhibit excellent stability at 1 A cm^(−2) over 70 h in 1 M KOH seawater.展开更多
The multiferroicity in the RMn_2O_5 family remains unclear, and less attention has been paid to its dependence on high-temperature(high-T) polarized configuration. Moreover, no consensus on the high-T space group symm...The multiferroicity in the RMn_2O_5 family remains unclear, and less attention has been paid to its dependence on high-temperature(high-T) polarized configuration. Moreover, no consensus on the high-T space group symmetry has been reached so far. In view of this consideration, one may argue that the multiferroicity of RMn_2O_5 in the low-T range depends on the poling sequence starting far above the multiferroic ordering temperature. In this work, we investigate in detail the variation of magnetically induced electric polarization in GdMn_2O_5 and its dependence on electric field poling routine in the high-T range. It is revealed that the multiferroicity does exhibit qualitatively different behaviors if the high-T poling routine changes, indicating the close correlation with the possible high-T polarized state. These emergent phenomena may be qualitatively explained by the co-existence of two low-T polarization components, a scenario that was proposed earlier.One is the component associated with the Mn^(3+)–Mn^(4+)–Mn^(3+) exchange striction that seems to be tightly clamped by the high-T polarized state, and the other is the component associated with the Gd Mn^(3+)–Mn^(4+)–Mn^(3+) exchange striction that is free of the clamping. The present findings may offer a different scheme for the electric control of the multiferroicity in RMn_2O_5.展开更多
Magnetic susceptibility,specific heat,and neutron powder diffraction measurements have been performed on polycrystalline Li_(2)Co(WO_4)_(2)samples.Under zero magnetic field,two successive magnetic transitions at T_(N1...Magnetic susceptibility,specific heat,and neutron powder diffraction measurements have been performed on polycrystalline Li_(2)Co(WO_4)_(2)samples.Under zero magnetic field,two successive magnetic transitions at T_(N1)~9.4 K and T_(N2)~7.4 K are observed.The magnetic ordering temperatures gradually decrease as the magnetic field increases.Neutron diffraction reveals that Li_(2)Co(WO_4)_(2)enters an incommensurate magnetic state with a temperature dependent k between T_(N1)and T_(N2).The magnetic propagation vector locks-in to a commensurate value k=(1/2,1/4,1/4)below T_(N2).The antiferromagnetic structure is refined at 1.7 K with Co2+magnetic moment 2.8(1),μ_B,consistent with our first-principles calculations.展开更多
Strong interdependence between power production and heat supply from combined power and heat units could restrict the wind power integration.Deploying hydrogen storage,typically formed by the electrolyser,hydrogen tan...Strong interdependence between power production and heat supply from combined power and heat units could restrict the wind power integration.Deploying hydrogen storage,typically formed by the electrolyser,hydrogen tank,and fuel cell,could be a promising measure to accommodate surplus wind power and facilitate the coordinated operation of power and heat.The authors consider coordinated scheduling under wind power uncertainty for an electricity‐heat coupled system with hydrogen storage and propose a distributionally robust joint chance‐constrained coordinated scheduling(DRJCC‐CS)model,where the waste heat from the electrolyser and fuel cell is incor-porated.The authors design distributionally robust joint chance constraints to account for wind power uncertainty related constraints and derive their tractable inner and outer mixed‐integer convex approximations.Consequently,the proposed DRJCC‐CS model is casted into a mixed‐integer convex programme.Case studies are conducted to demon-strate the effectiveness of the proposed DRJCC‐CS method.展开更多
The design of high-efficiency non-noble and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is highly paramount for water splitting and renewable energy systems.Molybdenum disulfide(MoS_(2))with ab...The design of high-efficiency non-noble and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is highly paramount for water splitting and renewable energy systems.Molybdenum disulfide(MoS_(2))with abundant edge sites can be utilized as a promising alternative,but its catalytic activity is greatly related to the pH values,especially in an alkaline environment due to the extremely high energy barriers for water adsorption and dissociation steps.Here we report an exceptionally efficient and stable electrocatalyst to improve the sluggish HER process of layered MoS_(2)particles in different pH electrolytes,especially in base.The electrocatalyst is constructed by in situ growing selenium-doped MoS_(2)(Se-MoS_(2))nanoparticles on three-dimensional cobalt nickel diselenide(mCo_(0.2)Ni_(0.8)Se_(2))nanostructured arrays.Due to the large number of active edge sites of Se-MoS_(2)particles exposed at the surface,robust electrical conductivity and large surface area of mCo_(0.2)Ni_(0.8)Se_(2)support,and strong interfacial interactions between Se-MoS_(2)and mCo_(0.2)Ni_(0.8)Se_(2),this hybrid catalyst shows very outstanding catalytic HER properties featured by low overpotentials of 30 and 122 mV at 10 and 100 mA/cm^(2)with good operational stability in base,respectively,which outperforms most of inexpensive catalysts consisting of layered MoS_(2),transition metal selenides and sulfides,and it performs as well as noble Pt catalysts.Meanwhile,this electrocatalyst is also very active in neutral and acidic electrolytes,requiring low overpotentials of 93 and 94 mV at 10 mA/cm^(2),respectively,demonstrating its superb pH universality as a HER electrocatalyst with excellent catalytic durability.This study provides a straightforward strategy to construct an efficient non-noble electrocatalyst for driving the HER kinetics in different electrolytes.展开更多
N-ethyl-N-nitrosourea (ENU) mutagenesis has led to the elucidation of several regulator genes for melanocyte and skin development. Here we characterized a mutant from ENU mutagenesis with similar phenotype as that o...N-ethyl-N-nitrosourea (ENU) mutagenesis has led to the elucidation of several regulator genes for melanocyte and skin development. Here we characterized a mutant from ENU mutagenesis with similar phenotype as that of Splotch mutant, including exencephaly, spina bifida and abnormal limbs in homozygotes as well as white belly spotting and occasionally loop-tail in heterozygotes. This novel mutant was named as SpxG. Through genome-wide linkage analysis in backcross progenies with microsatellite markers, the SpxG was confined to a region between DIMIT415 and DIMIT7 on chromosome 1, where notable Pax3 gene was located. Direct sequencing revealed that SpxG carried a nucleotide A894G missense transition in exon 6 of Pax3 gene that resulted in Asn to Asp substitution at amino acid 269 within the highly-conserved homeodomain (HD) DNA recognition module, which was the first point mutation found in this domain in mice. This N269D mutation impaired the transactivation capacity of Pax3 protein, but exerted no effect on Pax3 protein translation. The characterization of the new mutation expanded our understanding the transactivation and DNA-binding structure of Pax3 protein.展开更多
Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction rea...Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction(ORR).Herein,the polyoxometalate@polyaniline composite derived WN-W_(2)C heterostructured composite(WN-W_(2)C@pDC)has been fabricated through an in situ nitriding-carbonization strategy,with WN-W_(2)C nanoparticles implanted on N doped carbon nanorods.Asfabricated WN-W_(2)C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery,which possesses positive half-wave potential and large diffusion limiting current density(0.81 V and 5.8 mA·cm^(-2)).Moreover,it demonstrates high peak power density of 157.4 mW·cm^(-2)as Al-air primary cathode and excellent stability at the discharge-charge test(>500 h)of Zn-air secondary battery.The excellent activity and durability of WNW_(2)C@pDC catalyst should be attributed to the combined effect of intimate WN-W_(2)C heterointerfaces,unique embedded nanoparticles structure,and excellent electrical media of N doped carbon,confirmed by a series of contrast experiments.展开更多
This paper investigates the power sharing and voltage regulation issues of islanded single-/three-phase microgrids(S/T-MGs)where both sources and loads are unbalanced and the presence of adversarial cyber-attacks agai...This paper investigates the power sharing and voltage regulation issues of islanded single-/three-phase microgrids(S/T-MGs)where both sources and loads are unbalanced and the presence of adversarial cyber-attacks against sensors of distributed generator(DG)units is considered.Firstly,each DG unit is modeled as a heterogeneous linear dynamic agent with disturbances caused by sources and loads,then the problem is formulated as a distributed containment control problem.After that,to guarantee satisfactory power sharing and voltage control performance asymptotically achieved for the S/T-MGs,an attack-resilient distributed secondary control approach is developed by designing a distributed adaptive observer.With this approach,the effect of the cyber-attacks can be neutralized to ensure system stability and preserve bounded voltage synchronization.Simulation results are presented to demonstrate the effectiveness of the proposed control approach.展开更多
Constraints on each node and line in power systems generally have upper and lower bounds,denoted as twosided constraints.Most existing power system optimization methods with the distributionally robust(DR)chance-const...Constraints on each node and line in power systems generally have upper and lower bounds,denoted as twosided constraints.Most existing power system optimization methods with the distributionally robust(DR)chance-constrained program treat the two-sided DR chance constraint separately,which is an inexact approximation.This letter derives an equivalent reformulation for the generic two-sided DR chance constraint under the interval moment based ambiguity set,which does not require the exact moment information.The derived reformulation is a second-order cone program(SOCP)formulation and is then applied to the optimal power flow(OPF)problem under uncertainty.Numerical results on several IEEE systems demonstrate the effectiveness of the proposed SOCP formulation and show the differences with other DR chance-constrained OPF approaches.展开更多
Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn^(2+)/Yb^(3+)/Er^(3+) tri-d...Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn^(2+)/Yb^(3+)/Er^(3+) tri-doped Cs2Ag0.8Na0.2InCl6 double perovskites (MYE-DP), which exhibit photoluminescence (PL) covering from visible to near-infrared (NIR). The PL colors under excitations of 254 and 365 nm are notably different due to the changed relative emission intensities of self-trapped excitons (STEs) and Mn^(2+) d–d transition. Moreover, under the excitation of a NIR laser, the MYE-DP exhibits upconversion (UC) emissions of Mn^(2+) and Er^(3+). After ceasing the excitation, the long-lived trapped electrons can be thermally released to Mn^(2+) and Er^(3+) ions, resulting in both visible and NIR afterglow. Based on multi-modal emissions of the MYE-DP, we demonstrate a five-level anti-counterfeiting strategy, which significantly increases the anti-counterfeiting security. In addition, this work provides valuable insights into the energy transfer between STEs, Mn^(2+), Ln^(3+), and traps, laying a solid foundation for future development of new lead-free perovskites.展开更多
基金Supported by the Science and Technology Project of Jiangsu Provincial Health Commission,No.ZDB2020003Nantong Science and Technology Program Project,No.MS22022035+1 种基金the Clinical Research Project of the Affiliated Hospital of Nantong University,No.LCYJB06Grant Fund for Research Hospitals in Jiangsu Province,No.YJXYY202204-YSB74.
文摘BACKGROUND Cognitive impairment,which manifests as a limited deterioration of specific functions associated with a particular disease,can lead to a general deterioration of the patient’s standard of living.Transcranial magnetic stimulation,a noninvasive neuromodulation technique,is frequently employed to treat cognitive impairment in neuropsychiatric disorders.AIM To analyzed the state of international research on neuromodulation methods for treating cognitive impairment between 2014 and 2023,with the aim of exploring the state of research worldwide and the most recent developments in this particular area.METHODS Articles and reviews pertaining to neuromodulation methods for cognitive impairment were examined using the web of science database between January 2014 and December 2023.Publications,nations,organizations,writers,journals,citations,and keywords data from the identified studies were systematically analyzed using the CiteSpace 6.3.R1 software.RESULTS A total of 2371 documents with 11750 authors and 9461 institutions,with some cooccurrences,were retrieved.The quantity of yearly publications is showing an increasing trend.The United States and China have emerged as important contributors.Among the institutes,Harvard University had the highest number of publications,while Rossi S an author who is frequently cited.Initially,the primary keywords included human motor cortex,placebo-controlled trials,and serotonin reuptake inhibitors.However,the emphasis gradually moved to substance use disorders,supplementary motor areas,neural mechanisms,and exercise.CONCLUSION The use of neuromodulation techniques to treat cognitive impairment has drawn interest from academics all around the world.This study revealed hotspots and new trends in the research of transcranial magnetic stimulation as a cognitive impairment rehabilitation treatment.These findings are hold significant potential to guide further research and thus promote transcranial magnetic stimulation as a treatment method for cognitive impairment.
基金Element Resources,LLC,and Shell through UHETI,funded part of this work
文摘NiMo-based nanostructures are among the most active hydrogen evolution reaction(HER)catalysts under an alkaline environment due to their strong water dissociation ability.However,these nanostructures are vulnerable to the destructive effects of H_(2) production,especially at industry-standard current densities.Therefore,developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities.Here,a hierarchical interconnected NiMoN(HW-NiMoN-2h)with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes.HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology,in which nanowires con-nect free-standing nanorods,concurrently strengthening its structural stability to withstand H_(2) production at 1 A cm^(−2).Seawater is an attractive feedstock for water electrolysis since H_(2) generation and water desalination can be addressed simultaneously in a single process.The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ions interferes with the reation kinetics,thus lowering its activity slightly.However,benefiting from its hierarchical and interconnected characteristics,HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm^(−2) at 130 mV overpotential and to exhibit excellent stability at 1 A cm^(−2) over 70 h in 1 M KOH seawater.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804088,11234005,11374147,51431006,and 11704109)the National Key Research Program of China(Grant No.2016YFA0300101)the Research Project of Hubei Provincial Department of Education,China(Grant No.B2018146)
文摘The multiferroicity in the RMn_2O_5 family remains unclear, and less attention has been paid to its dependence on high-temperature(high-T) polarized configuration. Moreover, no consensus on the high-T space group symmetry has been reached so far. In view of this consideration, one may argue that the multiferroicity of RMn_2O_5 in the low-T range depends on the poling sequence starting far above the multiferroic ordering temperature. In this work, we investigate in detail the variation of magnetically induced electric polarization in GdMn_2O_5 and its dependence on electric field poling routine in the high-T range. It is revealed that the multiferroicity does exhibit qualitatively different behaviors if the high-T poling routine changes, indicating the close correlation with the possible high-T polarized state. These emergent phenomena may be qualitatively explained by the co-existence of two low-T polarization components, a scenario that was proposed earlier.One is the component associated with the Mn^(3+)–Mn^(4+)–Mn^(3+) exchange striction that seems to be tightly clamped by the high-T polarized state, and the other is the component associated with the Gd Mn^(3+)–Mn^(4+)–Mn^(3+) exchange striction that is free of the clamping. The present findings may offer a different scheme for the electric control of the multiferroicity in RMn_2O_5.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834002,12074111,and 11704109)the National Key R&D Project of China(Grant No.2016YFA0300101)。
文摘Magnetic susceptibility,specific heat,and neutron powder diffraction measurements have been performed on polycrystalline Li_(2)Co(WO_4)_(2)samples.Under zero magnetic field,two successive magnetic transitions at T_(N1)~9.4 K and T_(N2)~7.4 K are observed.The magnetic ordering temperatures gradually decrease as the magnetic field increases.Neutron diffraction reveals that Li_(2)Co(WO_4)_(2)enters an incommensurate magnetic state with a temperature dependent k between T_(N1)and T_(N2).The magnetic propagation vector locks-in to a commensurate value k=(1/2,1/4,1/4)below T_(N2).The antiferromagnetic structure is refined at 1.7 K with Co2+magnetic moment 2.8(1),μ_B,consistent with our first-principles calculations.
基金National Key Research and Development Program of China,Grant/Award Number:2022YFA1004600National Natural Science Foundation of China,Grant/Award Numbers:52307138,62373294,62192752+2 种基金State Key Laboratory of Power Systems,Grant/Award Number:SKLD23KM10Young Talent Fund of Xian Association for Science and Technology,Grant/Award Number:959202413065Postdoctoral Fellowship Program of CPSF,Grant/Award Number:GZC20232104。
文摘Strong interdependence between power production and heat supply from combined power and heat units could restrict the wind power integration.Deploying hydrogen storage,typically formed by the electrolyser,hydrogen tank,and fuel cell,could be a promising measure to accommodate surplus wind power and facilitate the coordinated operation of power and heat.The authors consider coordinated scheduling under wind power uncertainty for an electricity‐heat coupled system with hydrogen storage and propose a distributionally robust joint chance‐constrained coordinated scheduling(DRJCC‐CS)model,where the waste heat from the electrolyser and fuel cell is incor-porated.The authors design distributionally robust joint chance constraints to account for wind power uncertainty related constraints and derive their tractable inner and outer mixed‐integer convex approximations.Consequently,the proposed DRJCC‐CS model is casted into a mixed‐integer convex programme.Case studies are conducted to demon-strate the effectiveness of the proposed DRJCC‐CS method.
基金This project has been partially supported by THE Science and Technology Innovation Platform(Nos.2018RS3070,2019RS1032)Hundred Youth Talents Programs of Hunan Province,and the'XiaoXiang Scholar'Talents Foundation of Hunan Normal Univer-sity in Changsha of P.R.China+2 种基金This project also acknowledges the supports from the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20200519)instrumental analy-sis funds provided by Hunan Normal University(20CSY095,20CSY096)the National Science Foundation of China(Nos.11704109,51801059).
文摘The design of high-efficiency non-noble and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is highly paramount for water splitting and renewable energy systems.Molybdenum disulfide(MoS_(2))with abundant edge sites can be utilized as a promising alternative,but its catalytic activity is greatly related to the pH values,especially in an alkaline environment due to the extremely high energy barriers for water adsorption and dissociation steps.Here we report an exceptionally efficient and stable electrocatalyst to improve the sluggish HER process of layered MoS_(2)particles in different pH electrolytes,especially in base.The electrocatalyst is constructed by in situ growing selenium-doped MoS_(2)(Se-MoS_(2))nanoparticles on three-dimensional cobalt nickel diselenide(mCo_(0.2)Ni_(0.8)Se_(2))nanostructured arrays.Due to the large number of active edge sites of Se-MoS_(2)particles exposed at the surface,robust electrical conductivity and large surface area of mCo_(0.2)Ni_(0.8)Se_(2)support,and strong interfacial interactions between Se-MoS_(2)and mCo_(0.2)Ni_(0.8)Se_(2),this hybrid catalyst shows very outstanding catalytic HER properties featured by low overpotentials of 30 and 122 mV at 10 and 100 mA/cm^(2)with good operational stability in base,respectively,which outperforms most of inexpensive catalysts consisting of layered MoS_(2),transition metal selenides and sulfides,and it performs as well as noble Pt catalysts.Meanwhile,this electrocatalyst is also very active in neutral and acidic electrolytes,requiring low overpotentials of 93 and 94 mV at 10 mA/cm^(2),respectively,demonstrating its superb pH universality as a HER electrocatalyst with excellent catalytic durability.This study provides a straightforward strategy to construct an efficient non-noble electrocatalyst for driving the HER kinetics in different electrolytes.
基金supported by the National Basic Research Program of China(No.2007CB947301)the National Natural Science Foundation of China(No.30800613)Pujiang Talent(No.08PJ1407200)
文摘N-ethyl-N-nitrosourea (ENU) mutagenesis has led to the elucidation of several regulator genes for melanocyte and skin development. Here we characterized a mutant from ENU mutagenesis with similar phenotype as that of Splotch mutant, including exencephaly, spina bifida and abnormal limbs in homozygotes as well as white belly spotting and occasionally loop-tail in heterozygotes. This novel mutant was named as SpxG. Through genome-wide linkage analysis in backcross progenies with microsatellite markers, the SpxG was confined to a region between DIMIT415 and DIMIT7 on chromosome 1, where notable Pax3 gene was located. Direct sequencing revealed that SpxG carried a nucleotide A894G missense transition in exon 6 of Pax3 gene that resulted in Asn to Asp substitution at amino acid 269 within the highly-conserved homeodomain (HD) DNA recognition module, which was the first point mutation found in this domain in mice. This N269D mutation impaired the transactivation capacity of Pax3 protein, but exerted no effect on Pax3 protein translation. The characterization of the new mutation expanded our understanding the transactivation and DNA-binding structure of Pax3 protein.
基金This work was supported by Hubei Provincial Natural Science Foundation and Huangshi of China(No.2022CFD039)the National Natural Science Foundation of China(Nos.22008058 and 22209073)+2 种基金the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T2021010)the Natural Science Foundation of Jiangsu Province(No.BK20220912)the China Postdoctoral Science Foundation(No.2022M711607).
文摘Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction(ORR).Herein,the polyoxometalate@polyaniline composite derived WN-W_(2)C heterostructured composite(WN-W_(2)C@pDC)has been fabricated through an in situ nitriding-carbonization strategy,with WN-W_(2)C nanoparticles implanted on N doped carbon nanorods.Asfabricated WN-W_(2)C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery,which possesses positive half-wave potential and large diffusion limiting current density(0.81 V and 5.8 mA·cm^(-2)).Moreover,it demonstrates high peak power density of 157.4 mW·cm^(-2)as Al-air primary cathode and excellent stability at the discharge-charge test(>500 h)of Zn-air secondary battery.The excellent activity and durability of WNW_(2)C@pDC catalyst should be attributed to the combined effect of intimate WN-W_(2)C heterointerfaces,unique embedded nanoparticles structure,and excellent electrical media of N doped carbon,confirmed by a series of contrast experiments.
基金This work was supported in part by the National Natural Science Foundation of China(No.51907098)in part by the China Postdoctoral Science Foundation(No.2020T130337).
文摘This paper investigates the power sharing and voltage regulation issues of islanded single-/three-phase microgrids(S/T-MGs)where both sources and loads are unbalanced and the presence of adversarial cyber-attacks against sensors of distributed generator(DG)units is considered.Firstly,each DG unit is modeled as a heterogeneous linear dynamic agent with disturbances caused by sources and loads,then the problem is formulated as a distributed containment control problem.After that,to guarantee satisfactory power sharing and voltage control performance asymptotically achieved for the S/T-MGs,an attack-resilient distributed secondary control approach is developed by designing a distributed adaptive observer.With this approach,the effect of the cyber-attacks can be neutralized to ensure system stability and preserve bounded voltage synchronization.Simulation results are presented to demonstrate the effectiveness of the proposed control approach.
基金This work was supported by the Natural Science Foundation of Guangdong Province(No.2021A1515012450)。
文摘Constraints on each node and line in power systems generally have upper and lower bounds,denoted as twosided constraints.Most existing power system optimization methods with the distributionally robust(DR)chance-constrained program treat the two-sided DR chance constraint separately,which is an inexact approximation.This letter derives an equivalent reformulation for the generic two-sided DR chance constraint under the interval moment based ambiguity set,which does not require the exact moment information.The derived reformulation is a second-order cone program(SOCP)formulation and is then applied to the optimal power flow(OPF)problem under uncertainty.Numerical results on several IEEE systems demonstrate the effectiveness of the proposed SOCP formulation and show the differences with other DR chance-constrained OPF approaches.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2021YQ32)China Postdoctoral Science Foundation(No.2023M740472)+3 种基金the National Natural Science Foundation of China(Nos.62074019,62174016,and 62375028)Partial support was given by the Taishan Scholars Program of Shandong Province(No.tsqn201909117)Opening Foundation of Hubei Key Laboratory of Photoelectric Materials and Devices(No.PMD202401)the special fund for Science and Technology Innovation Teams of Shanxi Province.
文摘Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn^(2+)/Yb^(3+)/Er^(3+) tri-doped Cs2Ag0.8Na0.2InCl6 double perovskites (MYE-DP), which exhibit photoluminescence (PL) covering from visible to near-infrared (NIR). The PL colors under excitations of 254 and 365 nm are notably different due to the changed relative emission intensities of self-trapped excitons (STEs) and Mn^(2+) d–d transition. Moreover, under the excitation of a NIR laser, the MYE-DP exhibits upconversion (UC) emissions of Mn^(2+) and Er^(3+). After ceasing the excitation, the long-lived trapped electrons can be thermally released to Mn^(2+) and Er^(3+) ions, resulting in both visible and NIR afterglow. Based on multi-modal emissions of the MYE-DP, we demonstrate a five-level anti-counterfeiting strategy, which significantly increases the anti-counterfeiting security. In addition, this work provides valuable insights into the energy transfer between STEs, Mn^(2+), Ln^(3+), and traps, laying a solid foundation for future development of new lead-free perovskites.