C31- to C35-hop-17(21)-enes are identified by gas chromatography-mass spectrometry (GC-MS) analysis to exist as double isomers in most samples of the Aershan Formation and members 1 and 2 of the Tenggeer Formation...C31- to C35-hop-17(21)-enes are identified by gas chromatography-mass spectrometry (GC-MS) analysis to exist as double isomers in most samples of the Aershan Formation and members 1 and 2 of the Tenggeer Formation from well SH3. Comprehensive organic geochemistry and organic petrology study indicates that algae and bacteria are the main biological source of lower Cretaceous sediments in the Saihantala Sag, and this is in accordance with the existence of hop-17(21)-enes. The similar distributions of hop-17(21)-enes and hopanes of these samples indicate that hop-17(21)-enes were transformed into hopanes through hydrogenation during diagenesis processes. The existence of hop-17(21)-enes means that not only the formation of organic matter is related to an anoxic environment and a biological source of algae and bacteria, but also hop-17(21)-enes are direct indicators of hydrocarbon rock at an immature to low-maturity stage. High hydrocarbon conversion ratio, algae and bacteria source and a high abundance of organic matter suggest that the Saihantala Sag has the potential to generate immature to low-maturity oil, which may be of great significance for oil exploration in the Erlian Basin.展开更多
In general, total organic carbon (TOC) is directly used as a proxy for paleoproductivity, however, it is not only affected by paleoproductivity, but also controlled by redox conditions and terrigenous detrital matter ...In general, total organic carbon (TOC) is directly used as a proxy for paleoproductivity, however, it is not only affected by paleoproductivity, but also controlled by redox conditions and terrigenous detrital matter influx. Major and trace elements were analysed with the purpose of investigating the redox potential and paleoproductivity during deposition of the Hongshuizhuang Formation. In the present study, C-S relationship, V/Cr ratio and Mo concentration indicate that the dolomites were deposited in oxic environments, however, most of the black shales were accumulated in euxinic environments. P/Ti values in the Hongshuizhuang samples can be compared with those in the Japanese Ubara Permian-Triassic section which were regarded to be deposited under a moderate to high paleoproductivity. Ba/Al values are slightly lower than that of the laminated sediments from the continental margins of Central California (CCAL) which were thought to be accumulated under a high paleoproductivity. These results indicate that the paleoproductivity was moderate to high during deposition of the Hongshuizhuang Formation. Burial organic carbon shows positive correlations with V/Cr and Mo, but shows only weakly or no correlation with P/Ti and Ba/Al, respectively, suggesting that although the paleoproductivity was moderate to high during deposition of the Hongshuizhuang Formation, its organic-rich sediments were predominantly controlled by redox conditions and had no direct relationship with paleoproductivity.展开更多
基金supported by the National Science and Technology Major Project of China (2008ZX05018-002)
文摘C31- to C35-hop-17(21)-enes are identified by gas chromatography-mass spectrometry (GC-MS) analysis to exist as double isomers in most samples of the Aershan Formation and members 1 and 2 of the Tenggeer Formation from well SH3. Comprehensive organic geochemistry and organic petrology study indicates that algae and bacteria are the main biological source of lower Cretaceous sediments in the Saihantala Sag, and this is in accordance with the existence of hop-17(21)-enes. The similar distributions of hop-17(21)-enes and hopanes of these samples indicate that hop-17(21)-enes were transformed into hopanes through hydrogenation during diagenesis processes. The existence of hop-17(21)-enes means that not only the formation of organic matter is related to an anoxic environment and a biological source of algae and bacteria, but also hop-17(21)-enes are direct indicators of hydrocarbon rock at an immature to low-maturity stage. High hydrocarbon conversion ratio, algae and bacteria source and a high abundance of organic matter suggest that the Saihantala Sag has the potential to generate immature to low-maturity oil, which may be of great significance for oil exploration in the Erlian Basin.
基金supported by the National Science and Technology Major Project (2011ZX05018-002)the National Natural Science Foundation of China (40472076)
文摘In general, total organic carbon (TOC) is directly used as a proxy for paleoproductivity, however, it is not only affected by paleoproductivity, but also controlled by redox conditions and terrigenous detrital matter influx. Major and trace elements were analysed with the purpose of investigating the redox potential and paleoproductivity during deposition of the Hongshuizhuang Formation. In the present study, C-S relationship, V/Cr ratio and Mo concentration indicate that the dolomites were deposited in oxic environments, however, most of the black shales were accumulated in euxinic environments. P/Ti values in the Hongshuizhuang samples can be compared with those in the Japanese Ubara Permian-Triassic section which were regarded to be deposited under a moderate to high paleoproductivity. Ba/Al values are slightly lower than that of the laminated sediments from the continental margins of Central California (CCAL) which were thought to be accumulated under a high paleoproductivity. These results indicate that the paleoproductivity was moderate to high during deposition of the Hongshuizhuang Formation. Burial organic carbon shows positive correlations with V/Cr and Mo, but shows only weakly or no correlation with P/Ti and Ba/Al, respectively, suggesting that although the paleoproductivity was moderate to high during deposition of the Hongshuizhuang Formation, its organic-rich sediments were predominantly controlled by redox conditions and had no direct relationship with paleoproductivity.