期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Enhanced wear resistance,antibacterial performance,and biocompatibility using nanotubes containing nano-Ag and bioceramics in vitro
1
作者 Qingge Wang Jia Liu +9 位作者 Hong Wu Jingbo Liu Yaojia Ren luxin liang Xinxin Yan Ian Baker Shifeng Liu V.V.Uglov Chengliang Yang Liqiang Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期670-686,共17页
A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the s... A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis. 展开更多
关键词 βTi alloy Surface modification Wear resistance Corrosion resistance Osteogenic behavior Antibacterial activity
下载PDF
Enhanced corrosion resistance,antibacterial properties and osteogenesis by Cu ion optimized MgAl-layered double hydroxide on Mg alloy
2
作者 Qingge Wang Chuting Liao +8 位作者 Bo Liu Shaohui Jing Zhenhu Guo luxin liang Jingbo Liu Ning Li Runhua Zhou Ian Baker Hong Wu 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4174-4190,共17页
Magnesium(Mg)and its alloys have similar densities and elastic moduli to natural bone,making them an excellent choice for orthopedic implants.However,Mg alloys are prone to electrochemical corrosion,which often leads ... Magnesium(Mg)and its alloys have similar densities and elastic moduli to natural bone,making them an excellent choice for orthopedic implants.However,Mg alloys are prone to electrochemical corrosion,which often leads to implant failure and hinders the further development of Mg alloys due to bacterial infection around the implant.This work aims to enhance the corrosion resistance of Mg alloys,and provide theoretical guidance for solving the problem that Mg-based orthopedic implants are susceptible to bacterial infection and,thus,implant failure.In order to solve the corrosion problem,the Mg alloy AZ91D was used as the substrate,and a compact and uniform MgAlCu-layered double hydroxide(Mg(Cu)-LDH)was prepared on its surface using a hydrothermal method.The Mg(Cu)-LDH provides a barrier between the AZ91D and corrosive liquid,which effectively protects the Mg substrate from being corroded.The Mg(Cu)-LDH shows great cell viability for MC3T3-E1 cells.The Cu2+and Mg2+in the coating also endow the Mg(Cu)-LDH/AZ91D with antibacterial properties,showing strong antibacterial effects on both E.coli and S.aureus with antibacterial rates over 85%.Finally,in vivo results indicated that a LDH-coated implant had no systemic effects on the hearts,livers,spleens,lungs or kidneys.It was shown that 4 weeks after surgery the ratio of bone volume to tissue volume(BV/TV)of the LDH implant was 24%,which was 1.7 times that observed for AZ91D. 展开更多
关键词 Mg alloy Surface modification Layered double hydroxide Corrosion resistance Antibacterial mechanisms OSTEOGENESIS
下载PDF
Microstructural evolution,mechanical properties and corrosion mechanisms of additively manufactured biodegradable Zn-Cu alloys
3
作者 Jingbo Liu Dekuan Wang +6 位作者 Bo Liu Ning Li luxin liang Chao Chen Kechao Zhou Ian Baker Hong Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期142-157,共16页
Additively manufactured (AM) biodegradable zinc (Zn) alloys constitute an important branch of orthopedic implants because of their moderate degradation properties and bone-mimicking mechanical properties. In this pape... Additively manufactured (AM) biodegradable zinc (Zn) alloys constitute an important branch of orthopedic implants because of their moderate degradation properties and bone-mimicking mechanical properties. In this paper, the microstructural evolution and corrosion mechanisms of zinc-copper (Zn-Cu) alloys prepared by the laser-powder-bed-fusion (L-PBF) additive manufacturing method were investigated. Alloying with Cu significantly increases the ultimate tensile strength (UTS) of unalloyed Zn, but the UTS and ductility of unalloyed Zn and Zn-2Cu decrease with increasing laser energy density. Unalloyed Zn has a dendritic microstructure, while Zn-2Cu alloy has a peritectic microstructure. The formation of round peritectic grains is due to the low-temperature gradient of unalloyed Zn during the AM. The Zn-2Cu samples exhibited higher corrosion rates, addressing the problem of slow degradation of unalloyed Zn. The grain size distribution influences the corrosion behavior of the material. It enhances the corrosion rates of materials with fine grains in a non-passivating environment. However, the 100% extracts of Zn-2Cu samples exhibited greater values of cellular activity compared to unalloyed Zn samples, thus confirming their better cytocompatibility. This work demonstrates the great potential to design and modulate biodegradable Zn alloys to fulfill clinical needs by using AM technology. 展开更多
关键词 Additive manufacturing Zn-Cu alloy Microstructure Mechanical property Corrosion behavior
原文传递
Powder metallurgical Ti-Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application 被引量:6
4
作者 Sihui Ouyang Qianli Huang +2 位作者 Yong Liu Zhengxiao Ouyang luxin liang 《Bioactive Materials》 SCIE 2019年第1期37-42,共6页
In this work,TieMg metal-metal composites(MMCs)were successfully fabricated by spark plasma sintering(SPS).In vitro,the proliferation and differentiation of SaOS-2 cells in response to TieMg metal-metal composites(MMC... In this work,TieMg metal-metal composites(MMCs)were successfully fabricated by spark plasma sintering(SPS).In vitro,the proliferation and differentiation of SaOS-2 cells in response to TieMg metal-metal composites(MMCs)were investigated.In vivo,a rat model with femur condyle defect was employed,and TieMg MMCs implants were embedded into the femur condyles.Results showed that TieMg MMCs exhibited enhanced cytocompatibility to SaOS-2 cells than pure Ti.The micro-computed tomography(Micro-CT)results showed that the volume of bone trabecula was significantly more abundant around TieMg implants than around Ti implants,indicating that more active new-bone formed around TieMg MMCs implants.Hematoxylin-eosin(H&E)staining analysis revealed significantly greater osteointegration around TieMg implants than that around Ti implants. 展开更多
关键词 Powder metallurgy COMPOSITES OSTEOCONDUCTION OSSEOINTEGRATION
原文传递
Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential 被引量:2
5
作者 luxin liang Qianli Huang +4 位作者 Hong Wu Hao He Guanghua Lei Dapeng Zhao Kun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期167-178,共12页
Modulating the activation state and degree of macrophages still remains as a challenge for the topographical design of Ti-based implants.In this work,micro/nano-structured coatings were prepared on Ti substrates by mi... Modulating the activation state and degree of macrophages still remains as a challenge for the topographical design of Ti-based implants.In this work,micro/nano-structured coatings were prepared on Ti substrates by micro-arc oxidation(MAO)and subsequent hydrothermal(HT)treatment.By varying the HT conditions,plate-like nano-structures with an average length of 80,440 or 780 nm were obtained on MAO-prepared micro-topographical surfaces.Depending on the dimensional features of nano-plates,the specimens were noted as Micro,Micro/Nano-180,Micro/Nano-440 and Micro/Nano-780,respectively.The in vitro results showed that the activation state and degree of macrophages could be effectively modulated by the micro/nano-structured surfaces with various dimensional features.Compared to the Micro surface,the Micro/Nano-180 surface activated both M1 and M2 phenotype in macrophages,while the Micro/Nano-440 and Micro/Nano-780 surfaces polarized macrophages to their M1 phenotype.The activation degree of M1 macrophages followed the trend:Micro<Micro/Nano-180<Micro/Nano-440<Micro/Nano-780.However,the osteogenic potential of the activated macrophages in response to various surfaces were in the order:Micro≈Micro/Nano-780<Micro/Nano-180<Micro/Nano-440.Together,the findings presented in this work indicate that engineering nano-structures with controllable dimensional features is a promising strategy to modulate macrophage activation state and degree.In addition,it is essential to determine the appropriate activation degree of M1 macrophages for enhanced osteogenesis. 展开更多
关键词 Titanium Micro/nano-structures Macrophages activation Inflammatory response OSTEOGENESIS
原文传递
Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application 被引量:1
6
作者 Kun Li luxin liang +5 位作者 Peng Du Zeyun Cai Tao Xiang Hiroyasu Kanetaka Hong Wu Guoqiang Xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期73-83,共11页
Magnesium(Mg)alloys can be regarded as the most promising biodegradable implant materials for orthopedic and stent applications due to their good biocompatibility and low Young’s modulus which is near to that of natu... Magnesium(Mg)alloys can be regarded as the most promising biodegradable implant materials for orthopedic and stent applications due to their good biocompatibility and low Young’s modulus which is near to that of natural bone.However,its applicability is hindered because it exhibits a high corrosion rate in the physiological environments.In this work,we fabricated Mg_(66)Zn_(30)Ca_(4)/Fe bulk metallic glass composites via spark plasma sintering(SPS).We studied the influence of different contents of Fe on the properties of the composites.The results indicated that Fe was uniformly distributed on the surface of Mg_(66)Zn_(30)Ca_(4) metallic glass(MG)as a second phase,which led to an improvement in the corrosion resistance and mechanical strength.The standard potential of Mg_(66)Zn_(30)Ca_(4)/Fe bulk metallic glass(BMG)composites increased as compared to Mg_(66)Zn_(30)Ca_(4),while their mechanical strength improved from 355 MPa to 616 MPa.Furthermore,cytotoxicity was investigated via the CCK-8 assay and calcein-AM staining,which revealed that the extraction mediums diluted 6 times(EM×6)of the Mg_(66)Zn_(30)Ca_(4) and Mg_(66)Zn_(30)Ca_(4)/Fe did not cause cell toxicity on day 3 and 5,while the EM×6 of the Mg_(66)Zn_(30)Ca_(4) showed cytotoxicity on day 1,3 and 5.Thus,Mg_(66)Zn_(30)Ca_(4)/Fe BMG composites exhibit significant potential for fabricating implants with good mechanical strength and corrosion resistance. 展开更多
关键词 Mg_(66)Zn_(30)Ca_(4)/Fe bulk metallic glass COMPOSITES Spark plasma sintering Corrosion behaviour Mechanical strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部