期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dielectric or plasmonic Mie object at air–liquid interface: The transferred and the traveling momenta of photon
1
作者 m r c mahdy Hamim mahmud rivy +6 位作者 Ziaur rahman Jony Nabila Binte Alam Nabila masud Golam Dastegir Al Quaderi Ibraheem muhammad moosa chowdhury mofizur rahman m Sohel rahman 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期311-323,共13页
Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be c... Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence,an obvious question arises: whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object(lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation. 展开更多
关键词 Abraham–Minkowski controversy dielectric interface machine learning optical force laws optical pulling force optical tractor beams
下载PDF
On chip chiral and plasmonic hybrid dimer or tetramer:Generic way to reverse longitudinal and lateral optical binding forces
2
作者 Sudipta Biswas roksana Khanam rumi +2 位作者 Tasnia rahman raima Saikat chandra Das m r c mahdy 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期305-316,共12页
For both the longitudinal binding force and the lateral binding force,a generic way of controlling the mutual attraction and repulsion(usually referred to as reversal of optical binding force)between chiral and plasmo... For both the longitudinal binding force and the lateral binding force,a generic way of controlling the mutual attraction and repulsion(usually referred to as reversal of optical binding force)between chiral and plasmonic hybrid dimers or tetramers has not been reported so far.In this paper,by using a simple plane wave and an onchip configuration,we propose a possible generic way to control the binding force for such hybrid objects in both the near-field region and the far-field region.We also investigate different inter-particle distances while varying the wavelengths of light for each inter-particle distance throughout the investigations.First of all,for the case of longitudinal binding force,we find that chiral-plasmonic hybrid dimer pairs do not exhibit any reversal of optical binding force in the near-field region nor in the far-field region when the wavelength of light is varied in an air medium.However,when the same hybrid system of nanoparticles is placed over a plasmonic substrate,a possible chip,it is possible to achieve a reversal of the longitudinal optical binding force.Later,for the case of lateral optical binding force,we investigate a setup where we place the chiral and plasmonic tetramers on a plasmonic substrate by using two chiral nanoparticles and two plasmonic nanoparticles,with the setup illuminated by a circularly polarized plane wave.By applying the left-handed and the right-handed circular polarization state of light,we also observe the near-field and the far-field reversal of lateral optical binding force for both cases.As far as we know,so far,no work has been reported in the literature on the generic way of reversing the longitudinal optical binding force and the lateral optical binding force of such hybrid objects.Such a generic way of controlling optical binding forces can have important applications in different fields of science and technology in the near future. 展开更多
关键词 longitudinal binding force PLASMONICS CHIRALITY optical force
下载PDF
Stable Fano-like plasmonic resonance: its impact on the reversal of far-and near-field optical binding force
3
作者 Hamim mahmud rivy m r c mahdy +2 位作者 Nabila masud Ziaur rahman Jony Saikat chandra Das 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第4期89-105,共17页
Even for a 100 nm interparticle distance or a small change in particle shape,optical Fano-like plasmonic resonance mode usually vanishes completely.It would be remarkable if stable Fano-like resonance could somehow be... Even for a 100 nm interparticle distance or a small change in particle shape,optical Fano-like plasmonic resonance mode usually vanishes completely.It would be remarkable if stable Fano-like resonance could somehow be achieved in distinctly shaped nanoparticles for more than 1μm interparticle distance,which corresponds to the far electromagnetic field region.If such far-field Fano-like plasmonic resonance can be achieved,controlling the reversal of the far-field binding force can be attained,like the currently reported reversals for near-field cases.In this work,we have proposed an optical set-up to achieve such a robust and stable Fano-like plasmonic resonance,and comparatively studied its remarkable impact on controlling the reversal of near-and far-field optical binding forces.In our proposed set-up,the distinctly shaped plasmonic tetramers are half immersed(i.e.air-benzene)in an inhomogeneous dielectric interface and illuminated by?circular?polarized light.We have demonstrated significant differences between near-and far-field optical binding forces along with the Lorentz force field,which partially depends on the object’s shape.A clear connection is shown between the far-field binding force and the resonant modes,along with a generic mechanism to achieve controllable Fano-like plasmonic resonance and the reversal of the optical binding force in both far-and near-field configurations. 展开更多
关键词 Fano resonance OPTICAL binding FORCE LORENTZ FORCE plasmonic TETRAMER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部