This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence ...This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.展开更多
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t...We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.展开更多
The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of ther...The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.展开更多
The proposed method is based on replacement of the unknown function by a truncated series of the shifted Legendre polynomial expansion. An approximate formula of the integer derivative is introduced. Special attention...The proposed method is based on replacement of the unknown function by a truncated series of the shifted Legendre polynomial expansion. An approximate formula of the integer derivative is introduced. Special attention is given to study the convergence analysis and derive an upper bound of the error for the presented approximate formula. The introduced method converts the proposed equation by means of collocation points to a system of algebraic equations with shifted Legendre coefficients. Thus, after solving this system of equations, the shifted Legendre coefficients are obtained. This efficient numerical method is used to solve the system of ordinary differential equations which describe the thin film flow and heat transfer with the effects of the thermal radiation, magnetic field, and slip velocity.展开更多
文摘This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.
文摘We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.
文摘The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.
文摘The proposed method is based on replacement of the unknown function by a truncated series of the shifted Legendre polynomial expansion. An approximate formula of the integer derivative is introduced. Special attention is given to study the convergence analysis and derive an upper bound of the error for the presented approximate formula. The introduced method converts the proposed equation by means of collocation points to a system of algebraic equations with shifted Legendre coefficients. Thus, after solving this system of equations, the shifted Legendre coefficients are obtained. This efficient numerical method is used to solve the system of ordinary differential equations which describe the thin film flow and heat transfer with the effects of the thermal radiation, magnetic field, and slip velocity.