The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early d...The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.展开更多
An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite eleme...An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.展开更多
基金Projects(UKM-KK-03-FRGS0118-2010,UKM-OUP-NBT-28-135/2011)supported by FRGS Universiti Kebangsaan Malaysia,Malaysia
文摘The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.
基金Universiti Kebangsaan Malaysia grant UKM-KK-03-FRGS 0118-2010Universiti Teknikal Malaysia Melaka for supporting these research activities
文摘An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.