The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium al...The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, sWain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true sWain pre- dicted that lower deformation temperature and higher sWain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s^-1) is appropriate.展开更多
基金supported by the Natural Science Foundation of Shandong Province (Nos Y2008F27 and ZR2009FL003)the S&T Developing Program of Shandong Province, China (2007GG10004013)the Doctoral Foundation of University of Jinan (XBS0830)
文摘The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, sWain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true sWain pre- dicted that lower deformation temperature and higher sWain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s^-1) is appropriate.