Geothermal water of Xi'an and Xianyang in the central Guanzhong basin is typically geopressured thermal water in China. 5180 and 5D data of geopressured thermal water'in Xi'an and Xianyang, combined with data from ...Geothermal water of Xi'an and Xianyang in the central Guanzhong basin is typically geopressured thermal water in China. 5180 and 5D data of geopressured thermal water'in Xi'an and Xianyang, combined with data from the perimeter of the basin, are analyzed to study features of hydrogen and oxygen shifts. The results show that ^18O exchange of geothermal water at the perimeter of the basin and in the non-geopressured thermal water in the center of the basin is not evident, while in most of the geopressured thermal water in the central basin, in cities such as Xi'an and Xianyang, significant oxygen exchange had taken place as well as hydrogen exchange, suggesting that isotope exchanges would slowly move the geothermal water system towards equilibrium. Thermal water reservoirs in the central basin have passed through significant water-rock reactions. Moreover, the geothermal reservoir of Xianyang city is relatively much more enclosed than that of Xi'an city. It has been observed that the more enclosed the geological environment of geothermal water is, the more obvious the oxygen shifts are. With the increasing of the depth, residence time, total amounts of dissolute solids and temperatures of geothermal waters, the oxygen exchange accelerates.展开更多
In the process of geothermal exploitation and utilization, the reinjection amount of used geothermal water in super-deep and porous reservoir is small and significantly decreases over time. This has been a worldwide p...In the process of geothermal exploitation and utilization, the reinjection amount of used geothermal water in super-deep and porous reservoir is small and significantly decreases over time. This has been a worldwide problem, which greatly restricts the exploitation and utilization of geothermal resources. Based on a large amount of experiments and researches, the reinjection research on the tail water of Xianyang No.2 well, which is carried out by combining the application of hydrogeochemical simulation, clogging mechanism research and the reinjection experiment, has achieved breakthrough results. The clogging mechanism and indoor simulation experiment results show: Factors affecting the tail water reinjection of Xianyang No.2 well mainly include chemical clogging, suspended solids clogging, gas clogging, microbial clogging and composite clogging, yet the effect of particle migration on clogging has not been found; in the process of reinjection, chemical clogging was mainly caused by carbonates(mainly calcite), silicates(mainly chalcedony), and a small amount of iron minerals, and the clogging aggravated when the temperature rose; suspended solids clogging also aggravated when the temperature rose, which showed that particles formed by chemical reaction had a certain proportion in suspended solids.展开更多
基金Projects 1212010535416 supported by the Geological Investigation Bureau of China2005D03 by the Shaanxi Natural Science Foundation
文摘Geothermal water of Xi'an and Xianyang in the central Guanzhong basin is typically geopressured thermal water in China. 5180 and 5D data of geopressured thermal water'in Xi'an and Xianyang, combined with data from the perimeter of the basin, are analyzed to study features of hydrogen and oxygen shifts. The results show that ^18O exchange of geothermal water at the perimeter of the basin and in the non-geopressured thermal water in the center of the basin is not evident, while in most of the geopressured thermal water in the central basin, in cities such as Xi'an and Xianyang, significant oxygen exchange had taken place as well as hydrogen exchange, suggesting that isotope exchanges would slowly move the geothermal water system towards equilibrium. Thermal water reservoirs in the central basin have passed through significant water-rock reactions. Moreover, the geothermal reservoir of Xianyang city is relatively much more enclosed than that of Xi'an city. It has been observed that the more enclosed the geological environment of geothermal water is, the more obvious the oxygen shifts are. With the increasing of the depth, residence time, total amounts of dissolute solids and temperatures of geothermal waters, the oxygen exchange accelerates.
基金funded by National Science Foundation Project in 2015 (No.41472221)
文摘In the process of geothermal exploitation and utilization, the reinjection amount of used geothermal water in super-deep and porous reservoir is small and significantly decreases over time. This has been a worldwide problem, which greatly restricts the exploitation and utilization of geothermal resources. Based on a large amount of experiments and researches, the reinjection research on the tail water of Xianyang No.2 well, which is carried out by combining the application of hydrogeochemical simulation, clogging mechanism research and the reinjection experiment, has achieved breakthrough results. The clogging mechanism and indoor simulation experiment results show: Factors affecting the tail water reinjection of Xianyang No.2 well mainly include chemical clogging, suspended solids clogging, gas clogging, microbial clogging and composite clogging, yet the effect of particle migration on clogging has not been found; in the process of reinjection, chemical clogging was mainly caused by carbonates(mainly calcite), silicates(mainly chalcedony), and a small amount of iron minerals, and the clogging aggravated when the temperature rose; suspended solids clogging also aggravated when the temperature rose, which showed that particles formed by chemical reaction had a certain proportion in suspended solids.