期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel IoT Architecture, Assessment of Threats and Their Classification withMachine Learning Solutions
1
作者 Oliva Debnath Saptarshi Debnath +2 位作者 Sreyashi Karmakar md tausifmallick Himadri Nath Saha 《Journal on Internet of Things》 2023年第1期13-43,共31页
The Internet of Things(IoT)will significantly impact our social and economic lives in the near future.Many Internet of Things(IoT)applications aim to automate multiple tasks so inactive physical objects can behave ind... The Internet of Things(IoT)will significantly impact our social and economic lives in the near future.Many Internet of Things(IoT)applications aim to automate multiple tasks so inactive physical objects can behave independently of others.IoT devices,however,are also vulnerable,mostly because they lack the essential built-in security to thwart attackers.It is essential to perform the necessary adjustments in the structure of the IoT systems in order to create an end-to-end secure IoT environment.As a result,the IoT designs that are now in use do not completely support all of the advancements that have been made to include sophisticated features in IoT,such as Cloud computing,machine learning techniques,and lightweight encryption techniques.This paper presents a detailed analysis of the security requirements,attack surfaces,and security solutions available for IoT networks and suggests an innovative IoT architecture.The Seven-Layer Architecture in IoT provides decent attack detection accuracy.According to the level of risk they pose,the security threats in each of these layers have been properly categorized,and the essential evaluation criteria have been developed to evaluate the various threats.Also,Machine Learning algorithms like Random Forest and Support Vector Machines,etc.,and Deep Learning algorithms like Artificial Neural Networks,Q Learning models,etc.,are implemented to overcome the most damaging threats posing security breaches to the different IoT architecture layers. 展开更多
关键词 Internet of Things(IoT) layered architecture threat assessment security machine learning attack detection attack mitigation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部