期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
模拟大气氮沉降对中国森林生态系统影响的研究进展 被引量:73
1
作者 鲁显楷 莫江明 +10 位作者 张炜 毛庆功 刘荣臻 王聪 王森浩 郑棉海 moRI Taiki 毛晋花 张勇群 王玉芳 黄娟 《热带亚热带植物学报》 CAS CSCD 北大核心 2019年第5期500-522,共23页
人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设... 人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。 展开更多
关键词 氮沉降 全球变化 森林生态系统 氮饱和 氮限制 氮素生物地球化学循环 生物多样性 碳吸存
下载PDF
氮沉降对土壤线虫群落影响的研究进展 被引量:9
2
作者 张勇群 毛庆功 +4 位作者 王聪 王森浩 刘滔 莫江明 鲁显楷 《热带亚热带植物学报》 CAS CSCD 北大核心 2020年第1期105-114,共10页
综述了主要陆地生态系统(草原、农田和森林)土壤线虫群落对氮沉降增加的响应格局和机制。总体上,氮沉降增加对线虫数量一般无显著影响,但增加了土壤中富集机会主义者(即低营养级的r-策略者)数量,降低了线虫群落成熟度指数(MI),表明氮沉... 综述了主要陆地生态系统(草原、农田和森林)土壤线虫群落对氮沉降增加的响应格局和机制。总体上,氮沉降增加对线虫数量一般无显著影响,但增加了土壤中富集机会主义者(即低营养级的r-策略者)数量,降低了线虫群落成熟度指数(MI),表明氮沉降增加可能会使土壤食物网简化。氮沉降增加主要通过改变土壤微环境(如增加含氮离子浓度、降低土壤pH)直接影响土壤线虫群落,或者改变植物地上地下资源的输入和线虫与其他土壤动物的关系,间接影响线虫群落。最后,根据目前研究现状,指出了当前研究存在的局限性,包括研究时间和空间尺度上以及研究技术手段上的局限。建议综合多个全球环境变化因子,并结合室内试验及分子手段的方法对土壤线虫群落进行研究。 展开更多
关键词 氮沉降 土壤线虫 线虫生态功能 陆地生态系统 土壤食物网
下载PDF
Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China 被引量:21
3
作者 LU Xian-Kai mo jiang-ming +4 位作者 P.GUNDERSERN ZHU Wei-Xing ZHOU Guo-Yi LI De-Jun ZHANGXu 《Pedosphere》 SCIE CAS CSCD 2009年第2期189-198,共10页
The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen bro... The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history. 展开更多
关键词 exchangeable cation forest soil land-use history N deposition SUBTROPICS
下载PDF
Preliminary Response of Soil Fauna to Simulated N Deposition in Three Typical Subtropical Forests 被引量:22
4
作者 XU Guo-Liang mo jiang-ming +1 位作者 ZHOU Guo-Yi FU Sheng-Lei 《Pedosphere》 SCIE CAS CSCD 2006年第5期596-601,共6页
A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed... A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4+ and NO3- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type, and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition. 展开更多
关键词 Dinghushan Biosphere Reserve N deposition soil fauna subtropical China
下载PDF
Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China 被引量:12
5
作者 FANG Yun-ting ZHU Wei-xing +2 位作者 mo jiang-ming ZHOU Guo-yi GUNDERSEN Per 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期752-759,共8页
Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to ... Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region. 展开更多
关键词 N deposition N saturation extractable inorganic N soil solution inorganic N subtropical China
下载PDF
Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China 被引量:10
6
作者 XU Guo-liang mo jiang-ming +3 位作者 FU Sheng-lei PER Gundersen ZHOU Guo-yi XUE Jing-Hua 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第5期603-609,共7页
We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, startin... We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m^2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m^2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3^- in the soil. 展开更多
关键词 soil fauna N deposition RESPONSE Subtropical China
下载PDF
Response of Nitrogen Leaching to Nitrogen Deposition in Disturbed and Mature Forests of Southern China 被引量:5
7
作者 FANG Yun-Ting M. YOH +2 位作者 mo jiang-ming P. GUNDERSEN ZHOU Guo-Yi 《Pedosphere》 SCIE CAS CSCD 2009年第1期111-120,共10页
Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching lo... Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition. 展开更多
关键词 atmospheric N deposition N addition N leaching loss N saturation subtropical forests
下载PDF
Roots of pioneer trees in the lower sub-tropical area of Dinghushan, Guangdong, China
8
作者 HAO Yan-ru PENG Shao-lin +4 位作者 mo jiang-ming LIU Xin-wei CHEN Zhuo-quan ZHOU Kai WU Jin-rong 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第5期377-385,共9页
Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and obser... Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broadqeaved forest; 50.61 t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. This is the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China. 展开更多
关键词 Pioneer tree Tree roots Lower subtropical forest Dinghushan China
下载PDF
氮、磷添加对热带森林土壤氮转化及损失影响的研究进展 被引量:10
9
作者 郭亚兵 毛晋花 +5 位作者 王聪 王森浩 李安迪 朱怡静 莫江明 张炜 《生态学杂志》 CAS CSCD 北大核心 2021年第10期3339-3354,共16页
土壤氮转化过程是森林生态系统氮循环的重要组成部分,调控着土壤可利用氮的含量,决定了土壤氮素的存留状况。大气氮沉降增加是全球变化研究领域的重点问题之一,氮和磷作为影响植物生长最主要的矿质元素,人类活动加剧造成的氮磷养分输入... 土壤氮转化过程是森林生态系统氮循环的重要组成部分,调控着土壤可利用氮的含量,决定了土壤氮素的存留状况。大气氮沉降增加是全球变化研究领域的重点问题之一,氮和磷作为影响植物生长最主要的矿质元素,人类活动加剧造成的氮磷养分输入的变化已经成为影响森林生态系统土壤氮循环的重要因素之一。截至目前,国内外已开展了大量关于氮磷输入对森林生态系统土壤氮转化影响的研究,但仍缺乏对该问题的统一结论和整体认知,这在相对"氮富集"、"磷限制"的热带森林尤为突出。本文综述了国内外关于热带森林土壤氮转化和氮损失对氮磷养分添加响应的研究结果,以期概述该问题的普遍规律并揭示其潜在机理。目前的研究趋于认为,长期氮输入使热带森林土壤氮转化过程加速,进而提高了土壤有效氮含量以及增强生态系统氮损失(通过气态排放和液态淋溶);磷添加则趋向于刺激植物-土壤之间的养分循环,降低热带森林土壤氮素损失速率,从而有利于土壤氮素的存留;氮磷同时添加对热带森林土壤氮转化过程可能不存在交互作用。在氮磷添加下,土壤环境条件、土壤有机质、凋落物性质、微生物群落组成等的变化可能是造成热带森林土壤氮转化速率大小和方向发生改变的潜在机理。同时,结合已有研究现状,指出了当前相关研究存在的问题及未来研究方向。 展开更多
关键词 养分添加 森林土壤 热带森林 氮转化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部