We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations.The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with ...We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations.The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with a constant-number Monte Carlo method for simulating the reproductive fitness and the statistical characteristics of growing cell populations.To benchmark accuracy and performance,we compare simulation results with those generated from a previously validated population dynamics algorithm.The comparison demonstrates that the accelerated method accurately simulates population dynamics with significant reductions in runtime under commonly invoked steady-state and symmetric cell division assumptions.Considering the increasing complexity of cell population models,the method is an important addition to the arsenal of existing algorithms for simulating cellular and population dynamics that enables efficient,coarse-grained exploration of parameter space.展开更多
We present an algorithm for the stochastic simulation of gene expression and heterogeneous population dynamics.The algorithm combines an exact method to simulate molecular-level fluctuations in single cells and a cons...We present an algorithm for the stochastic simulation of gene expression and heterogeneous population dynamics.The algorithm combines an exact method to simulate molecular-level fluctuations in single cells and a constant-number Monte Carlo method to simulate time-dependent statistical characteristics of growing cell populations.To benchmark performance,we compare simulation results with steadystate and time-dependent analytical solutions for several scenarios,including steadystate and time-dependent gene expression,and the effects on population heterogeneity of cell growth,division,and DNA replication.This comparison demonstrates that the algorithm provides an efficient and accurate approach to simulate how complex biological features influence gene expression.We also use the algorithm to model gene expression dynamics within"bet-hedging"cell populations during their adaption to environmental stress.These simulations indicate that the algorithm provides a framework suitable for simulating and analyzing realistic models of heterogeneous population dynamics combining molecular-level stochastic reaction kinetics,relevant physiological details and phenotypic variability.展开更多
基金supported financially by the National Science and Engineering Research Council of Canada(NSERC).
文摘We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations.The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with a constant-number Monte Carlo method for simulating the reproductive fitness and the statistical characteristics of growing cell populations.To benchmark accuracy and performance,we compare simulation results with those generated from a previously validated population dynamics algorithm.The comparison demonstrates that the accelerated method accurately simulates population dynamics with significant reductions in runtime under commonly invoked steady-state and symmetric cell division assumptions.Considering the increasing complexity of cell population models,the method is an important addition to the arsenal of existing algorithms for simulating cellular and population dynamics that enables efficient,coarse-grained exploration of parameter space.
基金the National Science and Engineering Research Council of Canada(NSERC)the Canadian Institutes of Health Research(CIHR)+1 种基金the Academy of Finland(Application Number 129657,Finnish Programme for Centres of Excellence in Research 2006-2011,and 124615)the Tampere Graduate School in Information Science and Engineering(TISE).
文摘We present an algorithm for the stochastic simulation of gene expression and heterogeneous population dynamics.The algorithm combines an exact method to simulate molecular-level fluctuations in single cells and a constant-number Monte Carlo method to simulate time-dependent statistical characteristics of growing cell populations.To benchmark performance,we compare simulation results with steadystate and time-dependent analytical solutions for several scenarios,including steadystate and time-dependent gene expression,and the effects on population heterogeneity of cell growth,division,and DNA replication.This comparison demonstrates that the algorithm provides an efficient and accurate approach to simulate how complex biological features influence gene expression.We also use the algorithm to model gene expression dynamics within"bet-hedging"cell populations during their adaption to environmental stress.These simulations indicate that the algorithm provides a framework suitable for simulating and analyzing realistic models of heterogeneous population dynamics combining molecular-level stochastic reaction kinetics,relevant physiological details and phenotypic variability.