This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystall...This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.展开更多
The photovoltaic (PV) cell performances are connected to the base photogenerated carriers charge. Some studies showed that the quantity of the photogenerated carriers charge increases with the increase of the solar il...The photovoltaic (PV) cell performances are connected to the base photogenerated carriers charge. Some studies showed that the quantity of the photogenerated carriers charge increases with the increase of the solar illumination. This situation explains the choice of concentration PV cell (C = 50 suns) in this study. However, the strong photogeneration of the carriers charge causes a high heat production by thermalization, collision and carriers charge braking due to the electric field induced by concentration gradient. This heat brings the heating of the PV cell base. That imposes the taking into account of the temperature influence in the concentrator PV cell operation. Moreover, with the proliferation of the magnetic field sources in the life space, it is important to consider its effect on the PV cell performances. Thus, when magnetic field and base temperature increase simultaneously, we observe a deterioration of the photovoltage, the electric power, the space charge region capacity, the fill factor and the conversion efficiency. However the photocurrent increases when the base temperature increases and the magnetic field strength decreases. It appears an inversion phenomenon in the evolution of the electrical parameters as a function of magnetic field for the values of magnetic field B> 4×10<sup>-4 </sup>T.展开更多
In this work, we are interested in the study of the thermal exchanges which take place at the evaporator of an adsorption refrigerator. Due to the cost of designing experimental devices and the impossibility of studyi...In this work, we are interested in the study of the thermal exchanges which take place at the evaporator of an adsorption refrigerator. Due to the cost of designing experimental devices and the impossibility of studying the influence of certain parameters experimentally, an alternative would be simulation. The aim is to provide a model for predicting the thermal behavior of the various elements in the cold room of an adsorption solar refrigerator. A dynamic modelling of the refrigerator taking into account fluid flow, heat and mass transfer phenomena in the cold room was made. The calculation code obtained using COMSOL 5.1 software makes it possible to analyze and study the influence of the various parameters on the performance of the system. In a second step, the theoretical results obtained were compared with the experimental results in order to validate the model. The analysis of the influence of the physical-thermal properties of the insulating material on the temperature of the chamber makes it possible to conclude that a material having a low density ρ, a low thermal conductivity λ and a low specific heat capacity offers better performance to the cold room. Better thermal insulation also implies having a reasonable insulation thickness.展开更多
It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentra...It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>展开更多
The main purpose of this work is to study doping level effects on a silicon PV cell under both moderate light concentration and normal illumination. This study also aims to compare the doping level effects under the b...The main purpose of this work is to study doping level effects on a silicon PV cell under both moderate light concentration and normal illumination. This study also aims to compare the doping level effects under the both illumination modes. The results show for both illumination modes that diffusion parameters decrease with increasing doping level. These results are in agreement with the studies of the current and the voltage which showed for the two illumination modes that doping level increase leads to a decrease in current density and an increase in voltage. It also emerges for the two illumination modes and for the doping range 10<sup>13</sup> cm<sup>-3</sup> - 10<sup>16</sup> cm<sup>-3</sup>, a decrease of maximum power and conversion efficiency. The results also show that decrease of diffusion parameters is faster under moderate concentration in comparison with normal illumination. These results predict a greater variation rate of the current, the voltage, the maximum power and the conversion efficiency under moderate concentration compared to normal illumination. Contrary to diffusion parameters study, the results show higher variation rates of parameters under normal illumination. This is explained by the fact that under moderate concentration, carriers density is close to doping level: the cell is then in high injection condition. Consequently, under moderate concentration, carriers density is less sensitive to doping level variations. The study confirms that carriers density variation with the doping level is weak under the moderate concentration compared to normal illumination.展开更多
A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of...A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.展开更多
The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier den...The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier density in the base of the solar cell increases with the increase of the flux of photons that crosses the solar cell. One of the methods used to increase the flux of photon on the illuminated side of the solar cell is the intensification of the illumination light. However, the intensification of the light come with the increase of the energy released by thermalization, the collision between carriers, their braking due to the carriers concentration gradient electric field which lead to increase the temperature in the base of the solar cell. This work presents a 3-D study, of the effect of the temperature on the electronic parameters of a polycrystalline silicon solar under intense light illumination. The electronic parameters on which we analyze the temperature effect are:?the mobility of solar cell carriers?(electrons and holes),?their diffusion coefficient, their diffusion length and their distribution in the bulk of the base. To study the effect of the temperature on electronic parameters, we take into account, the dependence of carriers (electrons and holes) mobility with the temperature (μn,(T)?μp(T)). Then, the resolution of the continuity equation,which is a function of the carriers gradient electric field and the carriers mobility,?leads to the expressions of?the diffusion coefficient, the diffusion length, and the density of carriers which are function of the temperature. Then, we studied the effects of the temperature on the diffusion parameters in order to explain their effect on the behavior the carriers distribution in intermediate, short circuit and open circuit operating modes at several positions in the base depth. It appears through this study that the diffusion coefficient and the diffusion length decrease with the increase of the temperature. We observe also that with the increase of the temperature, the density of carriers in the base of the solar cell in short circuit and open voltage operating modes increases. In intermediate operating mode, the density of carriers increases also with the temperature but it is function of the base depth.展开更多
文摘This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.
文摘The photovoltaic (PV) cell performances are connected to the base photogenerated carriers charge. Some studies showed that the quantity of the photogenerated carriers charge increases with the increase of the solar illumination. This situation explains the choice of concentration PV cell (C = 50 suns) in this study. However, the strong photogeneration of the carriers charge causes a high heat production by thermalization, collision and carriers charge braking due to the electric field induced by concentration gradient. This heat brings the heating of the PV cell base. That imposes the taking into account of the temperature influence in the concentrator PV cell operation. Moreover, with the proliferation of the magnetic field sources in the life space, it is important to consider its effect on the PV cell performances. Thus, when magnetic field and base temperature increase simultaneously, we observe a deterioration of the photovoltage, the electric power, the space charge region capacity, the fill factor and the conversion efficiency. However the photocurrent increases when the base temperature increases and the magnetic field strength decreases. It appears an inversion phenomenon in the evolution of the electrical parameters as a function of magnetic field for the values of magnetic field B> 4×10<sup>-4 </sup>T.
文摘In this work, we are interested in the study of the thermal exchanges which take place at the evaporator of an adsorption refrigerator. Due to the cost of designing experimental devices and the impossibility of studying the influence of certain parameters experimentally, an alternative would be simulation. The aim is to provide a model for predicting the thermal behavior of the various elements in the cold room of an adsorption solar refrigerator. A dynamic modelling of the refrigerator taking into account fluid flow, heat and mass transfer phenomena in the cold room was made. The calculation code obtained using COMSOL 5.1 software makes it possible to analyze and study the influence of the various parameters on the performance of the system. In a second step, the theoretical results obtained were compared with the experimental results in order to validate the model. The analysis of the influence of the physical-thermal properties of the insulating material on the temperature of the chamber makes it possible to conclude that a material having a low density ρ, a low thermal conductivity λ and a low specific heat capacity offers better performance to the cold room. Better thermal insulation also implies having a reasonable insulation thickness.
文摘It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>
文摘The main purpose of this work is to study doping level effects on a silicon PV cell under both moderate light concentration and normal illumination. This study also aims to compare the doping level effects under the both illumination modes. The results show for both illumination modes that diffusion parameters decrease with increasing doping level. These results are in agreement with the studies of the current and the voltage which showed for the two illumination modes that doping level increase leads to a decrease in current density and an increase in voltage. It also emerges for the two illumination modes and for the doping range 10<sup>13</sup> cm<sup>-3</sup> - 10<sup>16</sup> cm<sup>-3</sup>, a decrease of maximum power and conversion efficiency. The results also show that decrease of diffusion parameters is faster under moderate concentration in comparison with normal illumination. These results predict a greater variation rate of the current, the voltage, the maximum power and the conversion efficiency under moderate concentration compared to normal illumination. Contrary to diffusion parameters study, the results show higher variation rates of parameters under normal illumination. This is explained by the fact that under moderate concentration, carriers density is close to doping level: the cell is then in high injection condition. Consequently, under moderate concentration, carriers density is less sensitive to doping level variations. The study confirms that carriers density variation with the doping level is weak under the moderate concentration compared to normal illumination.
文摘A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.
文摘The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier density in the base of the solar cell increases with the increase of the flux of photons that crosses the solar cell. One of the methods used to increase the flux of photon on the illuminated side of the solar cell is the intensification of the illumination light. However, the intensification of the light come with the increase of the energy released by thermalization, the collision between carriers, their braking due to the carriers concentration gradient electric field which lead to increase the temperature in the base of the solar cell. This work presents a 3-D study, of the effect of the temperature on the electronic parameters of a polycrystalline silicon solar under intense light illumination. The electronic parameters on which we analyze the temperature effect are:?the mobility of solar cell carriers?(electrons and holes),?their diffusion coefficient, their diffusion length and their distribution in the bulk of the base. To study the effect of the temperature on electronic parameters, we take into account, the dependence of carriers (electrons and holes) mobility with the temperature (μn,(T)?μp(T)). Then, the resolution of the continuity equation,which is a function of the carriers gradient electric field and the carriers mobility,?leads to the expressions of?the diffusion coefficient, the diffusion length, and the density of carriers which are function of the temperature. Then, we studied the effects of the temperature on the diffusion parameters in order to explain their effect on the behavior the carriers distribution in intermediate, short circuit and open circuit operating modes at several positions in the base depth. It appears through this study that the diffusion coefficient and the diffusion length decrease with the increase of the temperature. We observe also that with the increase of the temperature, the density of carriers in the base of the solar cell in short circuit and open voltage operating modes increases. In intermediate operating mode, the density of carriers increases also with the temperature but it is function of the base depth.