Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentad...Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentadvancements in deep learning(DL)offer powerful tools to address this challenge.Aim:Thus,this study proposeda hybrid CNNBDLSTM,a combination of a convolutional neural network(CNN)with a bi-directional long shorttermmemory(BDLSTM)model to predict sepsis onset.Implementing the proposed model provides a robustframework that capitalizes on the complementary strengths of both architectures,resulting in more accurate andtimelier predictions.Method:The sepsis prediction method proposed here utilizes temporal feature extraction todelineate six distinct time frames before the onset of sepsis.These time frames adhere to the sepsis-3 standardrequirement,which incorporates 12-h observation windows preceding sepsis onset.All models were trained usingthe Medical Information Mart for Intensive Care III(MIMIC-III)dataset,which sourced 61,522 patients with 40clinical variables obtained from the IoT medical environment.The confusion matrix,the area under the receiveroperating characteristic curve(AUCROC)curve,the accuracy,the precision,the F1-score,and the recall weredeployed to evaluate themodels.Result:The CNNBDLSTMmodel demonstrated superior performance comparedto the benchmark and other models,achieving an AUCROC of 99.74%and an accuracy of 99.15%one hour beforesepsis onset.These results indicate that the CNNBDLSTM model is highly effective in predicting sepsis onset,particularly within a close proximity of one hour.Implication:The results could assist practitioners in increasingthe potential survival of the patient one hour before sepsis onset.展开更多
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,for funding this research work through Project Number RI-44-0214.
文摘Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentadvancements in deep learning(DL)offer powerful tools to address this challenge.Aim:Thus,this study proposeda hybrid CNNBDLSTM,a combination of a convolutional neural network(CNN)with a bi-directional long shorttermmemory(BDLSTM)model to predict sepsis onset.Implementing the proposed model provides a robustframework that capitalizes on the complementary strengths of both architectures,resulting in more accurate andtimelier predictions.Method:The sepsis prediction method proposed here utilizes temporal feature extraction todelineate six distinct time frames before the onset of sepsis.These time frames adhere to the sepsis-3 standardrequirement,which incorporates 12-h observation windows preceding sepsis onset.All models were trained usingthe Medical Information Mart for Intensive Care III(MIMIC-III)dataset,which sourced 61,522 patients with 40clinical variables obtained from the IoT medical environment.The confusion matrix,the area under the receiveroperating characteristic curve(AUCROC)curve,the accuracy,the precision,the F1-score,and the recall weredeployed to evaluate themodels.Result:The CNNBDLSTMmodel demonstrated superior performance comparedto the benchmark and other models,achieving an AUCROC of 99.74%and an accuracy of 99.15%one hour beforesepsis onset.These results indicate that the CNNBDLSTM model is highly effective in predicting sepsis onset,particularly within a close proximity of one hour.Implication:The results could assist practitioners in increasingthe potential survival of the patient one hour before sepsis onset.