期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
1
作者 王森 张权治 +2 位作者 马方方 maksudbek yusupov 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling 被引量:1
2
作者 Annemie Bogaerts maksudbek yusupov +1 位作者 Jamoliddin Razzokov Jonas Van der Paal 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第2期253-263,共11页
Plasma is gaining increasing interest for cancer treatment, but the underlying mechanisms are not yet fully understood. Using computer simulations at the molecular level, we try to gain better insight in how plasma-ge... Plasma is gaining increasing interest for cancer treatment, but the underlying mechanisms are not yet fully understood. Using computer simulations at the molecular level, we try to gain better insight in how plasma-generated reactive oxygen and nitrogen species (RONS) can penetrate through the cell membrane. Specifically, we compare the permeability of various (hydrophilic and hydrophobic) RONS across both oxidized and nonoxidized cell membranes. We also study pore formation, and how it is hampered by higher concentrations of cholesterol in the cell membrane, and we illustrate the much higher permeability of H2O2 through aquaporin channels. Both mechanisms may explain the selective cytotoxic effect of plasma towards cancer cells. Finally, we also discuss the synergistic effect of plasma-induced oxidation and electric fields towards pore formation. 展开更多
关键词 PLASMA MEDICINE cancer treatment computer modelling cell MEMBRANE REACTIVE oxygen and NITROGEN species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部